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Chapter 1

Introduction: instabilities in
tokamak plasmas

1.1 Tokamak plasmas

A plasma is an ionized gas, which can be found in nature (e.g. in plan-
etary ionospheres, stellar coronas and interplanetary space) and recre-
ated in the laboratory on Earth. Fusion plasmas are high temperature
plasmas, heated with the aim of reaching self-sustained nuclear fusion.
Nuclear fusion is based on the nuclear reaction transforming a few light
nuclei into a heavier one with the net loss of mass and production of en-
ergy. In the sun, nuclear fusion of a hydrogen plasma confined by means
of its own gravity, is the dominant process of production of energy, which
then reaches our planet allowing life on Earth. In the laboratory, fusion
plasmas are confined using magnetic fields (or alternatively, compressed

Figure 1.1: A tokamak and its mag-
netic field (www.iter.org).

and heated in very short times
by means of lasers, in the so-
called “inertial confinement fu-
sion”). Amongst toroidal con-
finement devices, axisymmetric
magnetic configurations named
“tokamaks” are chosen for the re-
sults described in this disserta-
tion (see Fig. 1.1). Tokamaks
are easier to build and operate,
and, to date, more performing
than other confinement concepts
such as stellarators or reversed-
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field-pinches. The International Thermonuclear Experimental Reactor
(ITER) is the result of an international collaboration and the expression
of the effort in the scientific community to achieve the goal of operating
in controlled burning plasma conditions [1], starting experiments in 2025.

Hot and dense plasmas must be produced to reach controlled nuclear
fusion in tokamaks. Transport in tokamaks has been found to follow
anomalous scalings with respect to Coulombian collision predictions. In
particular, at the tokamak edge heat transport is found to be more than
one order of magnitude higher than collisional transport for ions and
three orders for electrons. Turbulent fluctuations in the electron density
are observed mainly in the edge regions of tokamaks. Ion Temperature
Gradient (ITG) modes and Trapped Electron Modes (TEM) are amongst
the most common micro-instabilities responsible for turbulent transport
in these devices, tapping the energy of the equilibrium temperature and
density gradients (see Sec. 1.2.2). Numerical simulations have shown that
this turbulence is fundamentally electromagnetic and nonlinear, i.e. not
treatable with linear or secondary instability analysis [2]. Moreover, the
heat transport can be largely enhanced by the presence of impurities in
the tokamak plasmas.

It has been shown that time-dependent sheared flows can also be non-
linearly generated in a turbulent environment. These zonal flows (ZFs)
- toroidally and poloidally symmetric structures - are important because
they can contribute to the regulation of turbulence (see Sec. 1.2.1). Two
types of ZFs have been observed in toroidal confined plasmas, i.e. a zero-
frequency zonal flow (ZFZF) with a near zero frequency and a geodesic
acoustic mode (GAM) with a higher frequency, of the order of the sound
wave frequency. Recently, a number of experiments in several fusion
plasma devices have shown the important role of ZFs in the LH transi-
tion (i.e. the transition from a “Low-confinement” tokamak mode, to a
“High-confinement” tokamak mode, where the plasma confinement time
is higher by a factor 2 or more), including both ZFZF and GAM.

Energetic ions in the MeV range are present in ignited plasmas, ei-
ther as fusion products or because they are produced by auxiliary heat-
ing/current drive systems. Alfvén Eigenmodes are electromagnetic oscil-
lations which propagate with the characteristic Alfvén velocity along the
magnetic field lines (see Sec. 1.2.3). For typical tokamak plasmas, the
Alfvén velocity is of the order of the thermal velocity of energetic ions.
Therefore, Alfvén Eigenmodes can resonate with energetic ions and they
are recognized as particularly dangerous due to their role in redistribut-
ing the energetic ion population, and therefore damaging the heating
mechanism. Energetic ions can also make GAMs unstable, generating
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energetic-particle-driven GAMs, i.e. EGAMs (see Sec. 1.2.1). EGAMs
are also presently considered important for their role in redistributing
energetic particles in phase space, and possibly interacting with turbu-
lence.

1.2 Modes and instabilities in tokamaks

In this section, an introduction on modes and instabilities in labora-
tory plasmas is given. Reaching a complete theoretical understanding
of these modes and instabilities is very important, due to their role
in damaging the stability and confinement of heat and particles in fu-
sion experiments. In particular, Geodesic Acoustic Modes, Zonal Flows,
Ion-Temperature-Gradient modes and energetic-particle driven instabil-
ities like shear Alfvén Eigenmodes and energetic-particle driven GAMs
(EGAMs) are discussed here.

1.2.1 Geodesic Acoustic Modes and Zonal Flows

Geodesic Acoustic Modes (GAMs) [3, 4, 5, 6] and Zero-Frequency Zonal
Flows (ZFZFs) [7, 8] are respectively low frequency (ω ∼ cs/R, with
cs being the sound speed and R the tokamak major radius) and zero
frequency (ω ≪ cs/R) axisymmetric perturbation of tokamaks plasmas,

Figure 1.2: Poloidal section of a tokamak tur-
bulent plasma with zonal flows (A) and with-
out ZF (B). Zonal flows break the turbulence
vortices, substantially reducing the radial heat
transport (from Ref. [10]).

with mainly m=0 (with m
being the poloidal mode
number) scalar potential
component. Due to their
key role in the turbulence
saturation mechanism [9],
understanding their forma-
tion and nonlinear interac-
tion with turbulence modes
is crucial for modeling and
predicting transport prop-
erties of a tokamak plasma
(see, for example, Fig. 1.2,
from Ref. [10]). At present day, the GAM frequency and spatial structure
measured in tokamak plasmas are not well understood and predictable in
terms of a theoretical framework, and a complete nonlinear global gyroki-
netic investigation with a realistic tokamak geometry has not yet been
performed. One main problem is the double nature of GAMs as contin-
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uum modes and global eigenmodes. In fact, due to the fact that the GAM
local frequency depends on the radial coordinate, phase mixing has been
theoretically predicted to occur [4], and recently found in gyrokinetic sim-
ulations [11, 12, 13] (see Fig. 1.3). The characteristic signature of phase
mixing, i.e. the linear growth of the radial wave-number in time in the
presence of a temperature gradient, has also been studied in combination
with the Landau damping, which depends on the spatial structure. When
plasma parameters characteristic of realistic tokamak profiles have been
considered, the GAM decay time has been found to be an order of magni-
tude lower than the decay due to the Landau damping alone, and in some
cases of the same order of magnitude of the characteristic GAM drive
time due to the nonlinear interaction with an ion-temperature-gradient
(ITG) mode [11, 12, 13]. This has been proposed as the novel mecha-
nism of damping, capable of explaining the disappearance of GAMs in
the high-confinement tokamak mode (H-mode) where the temperature
gradient at the edge are very high.
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Figure 1.3: Wave-number of
Geodesic Acoustic Modes (GAMs) in-
creasing in time due to phase-mixing.
The combined effect of phase mixing
and Landau damping has been pro-
posed as an explanation for the dis-
appearance of GAMs observed in the
high-confinement mode (H-mode) of
tokamak discharges [11, 12, 13].

At the same time, GAMs with
global structure have been observed
in experiments. In the absence of
energetic particles (EP), the main
excitation mechanism of GAMs is
the nonlinear interaction with ZFs
and turbulence [9]. In this phase,
it has been confirmed that the fre-
quency radial profile of GAMs pre-
dicted theoretically using linear gy-
rokinetic simulations with experi-
mental flux surface geometry and
all species treated kinetically, does
not well reproduce the value mea-
sured experimentally. The most
likely reason has been conjectured
to be the nonlinear interaction with
turbulence [13].

When an EP population is present, zonal structures with frequency
of the order of magnitude of the GAM frequency can also be excited via
inverse Landau damping. These EP-driven GAMs, or EGAMs [14], can
be important because of their nonlinear interaction with turbulence, and
also because of their nonlinear redistribution of EP in phase space. A
dedicated introduction to EGAMs is given in Chapter 2.
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1.2.2 Micro-turbulence modes

Ion-temperature-gradient modes (ITG) [15] are drift-waves, driven un-
stable in tokamaks by ion temperature gradients. ITGs are, together
with “trapped-electron-modes” and “kinetic ballooning modes”, some of

Figure 1.4: Global structure of the
vector potential of ITG in electromag-
netic simulations with ORB5 [17].

the most common microinstabili-
ties causing turbulent transport in
tokamaks. Extensive investigations
of ITG and TEM turbulence by
means of electrostatic gyrokinetic
simulations have been performed in
the last decades, and recently also
the electromagnetic effects have
started being investigated numeri-
cally [16, 17]. The evolution of the
mode in time can be divided in a
first transient phase, followed by a
linear phase, where the perturbed
fields grow exponentially. Linear
and nonlinear properties of electro-
magnetic ITG turbulence have been found different with respect to the
results of electrostatic simulations with electrons treated adiabatically.
This sheds light about the importance of treating properly the parallel
component of electron motion for correctly understanding the ITG linear
dynamics, and consequently ITG turbulence behavior.

The spatial structure of the mode has been investigated in electro-
magnetic simulations (see Fig. 1.4). At the low-field side of the tokamak
(θ = 0), the scalar potential has a well defined poloidal structure with
one dominant poloidal mode number m, whereas at the high-field side
(θ = π), the characteristic ballooning behavior can be observed, where
the mode loses the well defined poloidal structure and is described by
the composition of several poloidal mode numbers. As for the parallel
component of the vector potential, the structure reflects the scalar po-
tential modulated by a sinusoidal m = 1 envelope, yielding very small
intensity at θ = 0 and θ = π. Moreover, the spatial structure of the ITG
modes is routinely investigated experimentally in tokamak experiments,
for example with reflectometers. To bridge the gap between the exper-
imental measurements and numerical simulations, synthetic diagnostics
are used to post-process the numerical results (see Fig. 1.5). This makes
the comparison more realistic.

Recently, the investigation of the nonlinear interaction of turbulence
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Figure 1.5: Electron density perturbation associated with the Ion-
temperature-gradient (ITG) turbulence mode observed with ORB5 (left)
and coupling of a synthetic full-wave reflectometer (right) [20].

and global modes like Alfvén eigenmodes or EGAMs has started [18, 19].
The effect of turbulence on the mode saturation levels and the effect
of the modes on the turbulent transport is being studied (see the next
section for more details).

1.2.3 Shear Alfvén instabilities

Shear Alfvén waves (SAW) are transverse electromagnetic perturbations
which propagate parallel to the ambient magnetic field with the charac-
teristic Alfvén group velocity vA. In fusion plasmas, fast ions in the MeV
energy range have velocities comparable with the typical Alfvén speed
and therefore these energetic particles (EP) can resonantly interact with
SAW and effectively exchange energy with the wave [21]. SAW in a
nonuniform equilibrium are subject to collisionless dissipation, known as
continuum damping [22], due to singular structures that are formed where
SAW continuum is resonantly excited. Due to magnetic field nonunifor-
mities along the field lines in toroidal geometry, gaps appear in the SAW
continuous spectrum [23] due to translational symmetry breaking, anal-
ogous to electrons traveling in a periodic lattice. Discrete Alfvén Eigen-
modes (AE), with frequency inside SAW continuum gaps [24] have a
generally low instability threshold, being affected only by Landau damp-
ing and practically unaffected by continuum damping. For this reason,
understanding the continuous spectrum structure is important, due to
the potential impact of AE stability on reaching the ignition condition
for magnetically confined fusion plasmas.
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Figure 1.6: Energetic particle radial redistribution at different times, for
a nonlinear simulation where only one Alfvén mode is unstable (left) [25].
First investigations of coexistence of Alfvén modes and turbulence in elec-
tromagnetic simulations with ORB5 (right) [19].

A) Gyrokinetic simulations of Shear Alfvén modes.
Due to non-negligible kinetic components of the SAW dynamics, such

as Landau damping and resonances with EP, a gyrokinetic treatment is
necessary if one wants to investigate properly the drive and damping
mechanisms. For these reasons, gyrokinetic codes like ORB5, developed
originally for turbulence simulations, have been developed for studies of
Shear Alfvén modes.

The linear dynamics of Alfvén modes has been investigated with
gyrokinetic codes, with detailed studies of the frequency and damping
rates of axisymmetric SAW perturbations and of toroidicity-induced AE
(TAE) (see fore example Ref. [26]). The nonlinear interaction of AE and
EP has also been investigated with gyrokinetic codes, focusing on the
study of the saturation mechanism. In particular, when EP are let re-
distribute due to the nonlinear wave-particle interaction (see Fig. 1.6),
the characteristic scales of saturation levels vs linear growth rates can be
measured (see for example Ref. [27, 28]).

Recently, the nonlinear interactions of AE and zonal structures and
of AE and turbulence have also been investigated within a gyrokientic
framework [25, 19]. Zonal structures such as GAMs and ZFZFs have
been found to develop due to force-driven excitation during the AE linear
phase.

B) Nonlinear interaction of Shear Alfvén modes and magnetic
islands.

Although the first studies of AMs were carried out in axisymmetric
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equilibria, in principle AMs can develop in any 3D shaped magnetic
geometry, like for example in stellarator magnetic fields, or in tokamak
magnetic fields modified by the presence of low-frequency MHD modes.

As an example of studies of AMs in nonlinear equilibria, the analytical
theory of AMs in an equilibrium with a quasi-static magnetic island has
been developed. The interest was born after the observation of modes
in the beta-induced AE (BAE) [29, 30] frequency range in the Frascati
Tokamak Upgrade (FTU) [31, 32] in the presence of an (m,n) = (2,1)
magnetic island, and in the absence of EP. Measured frequencies were
found to depend on the magnetic island amplitude as well. The modes
were observed only when the magnetic island size was over a certain
critical threshold. Later on, similar observations have been reported in
other tokamaks (e.g. in HL-2A [33]).
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f 
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Figure 1.7: Beta-induced
Alfvén eigenmode (BAE) and new
magnetic-island-induced Alfvén
eigenmodes (MiAE) [35, 36, 37].

A novel analytical model has been
developed to explain these observa-
tions, in the framework of a linear
MHD theory for finite-beta tokamak
plasmas [34] (see Fig. 1.7). When con-
sidering modes with different helicities
from that of the magnetic island in the
region inside the magnetic island, a
SAW continuous spectrum, similar to
that calculated in tokamak equilibria,
has been found. A typical size mag-
netic island has been shown to have
wide gaps in the continuous spectrum, due to the strong eccentricity
of the flux surfaces, analogously to the formation of Ellipticity-induced
AE gaps in tokamaks, but in this case inside the magnetic island equilib-
rium [35, 36]. When considering modes with the same helicity as the mag-
netic island, the BAE continuum accumulation point (BAE-CAP) has
been found to be shifted in space from the rational surface of the island,
to the separatrix flux surface position. The BAE-CAP frequency has also
been found to be modified. Moreover, at the island O-point, several mag-
netic island induced CAP (MiO-CAP) have been found [37, 38, 39]. The
existence of new magnetic-island-induced AE (MiAE), namely AE with
a discrete frequency and a finite radial width inside the magnetic island,
has also been discovered analytically [34]. The effect of the presence of
X-points in the flux-surfaces on the AE dynamics is a crucial point here,
and extrapolations to the dynamics of AEs in tokamaks with divertors,
are straightforward.
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Chapter 2

The theoretical models

2.1 The role of GAMs and EGAMs in toka-

mak plasmas

Zonal (i.e. axisymmetric) flows, associated to zonal structures of the
radial electric fields, are often observed in turbulent tokamak plasmas,
driven by the nonlinear interaction with drift-wave turbulence. Both
zero-frequency zonal flows (ZFZF) [40, 7, 8] and finite frequency geodesic
acoustic modes (GAM) [3, 4, 6] can be excited. GAMs have an os-
cillatory character, as they are basically a sound standing wave in the
nonuniform tokamak magnetic field (the toroidal curvature being the
main nonuniformity). GAMs are characterized by a dominant m=0 per-
turbed radial electric field and dominant m=1 perturbed density (m be-
ing the poloidal mode number). Due to their oscillatory character with
frequencies of the order of the ion transit frequency, they are strongly
affected by Landau damping (whereas ZFZF are mainly damped by col-
lisional damping). As a consequence of this energy flow from micro-
scopic to mesoscopic scales, ZFZFs and GAMs play a role as major
turbulence saturation mechanisms. Moreover, in the presence of ener-
getic particles (EP), EP-driven GAMs (EGAM) can be driven unstable
due to inverse Landau damping. EGAMs have been studied theoreti-
cally [41, 14, 42, 43, 44, 45, 46, 47, 48, 49, 6] and experimentally (see for
example Refs. [41, 50] and [51]). The role of EGAMs as possible media-
tors between EP and turbulence has also been emphasized [45, 48]. One
of the main effects of EGAMs in tokamak plasmas is the redistribution
of the EP population (crf. Ref. [52] for the implications on the losses
of counter-passing EP). In particular, in phase space, this occurs due to
nonlinear inverse Landau damping. As a possible consequence, EGAMs
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might modify the efficiency of the heating mechanism of neutral beam
injectors or ion cyclotron heating.

Understanding the dynamics of zonal structures like GAMs also sheds
light on the physics of low-frequency Alfvén modes like beta-induced
Alfvén Eigenmodes (BAE) [29]. This is due to the fact that GAMs and
BAEs are degenerate in the long-wavelength limit, when diamagnetic
effects are ignored [4]. In fact, both GAMs and Alfvén modes radially
localized near a rational surface (i.e. where k‖ = 0), can be described
by a vorticity equation derived from the quasineutrality, written in the
following form [4, 43, 12]:

∂

∂r

( ∂2

∂t2
− ω2

c (r)
) ∂

∂r
φ(r, t) = 0 (2.1)

The compressibility due to geodesic curvature coupling is identical for
GAMs and BAEs, and determines the value of the local continuum fre-
quency ωc.

The radial structure of GAMs can be observed in tokamaks to be of a
continuum type, or of a global type. Continuum GAMs are observed with
a frequency which changes with the radial position due to the shapes of
the plasma temperature profile and safety factor. On the other hand, a
more global structure, like that peculiar of an eigenmode, is observed in
some cases in tokamaks, and it is conjectured to be due to the nonlinear
drive of the turbulence [13]. EGAMs show always a global structure, de-
termined nonperturbatively by the EP profile (see for example Ref. [18],
and the original prediction in Ref. [14]). Due to the non-existence of a ra-
dial structure of EGAMs in the absence of their drive, we define them as
forced oscillations, analogously to the EPMs in the Alfvénic zoo [14, 21].

A kinetic model is necessary for theoretically describing GAMs and
EGAMs. One reason is that the EGAM has a frequency of the order
of magnitude of the sound frequency ωs =

√
2cs/R0, with cs =

√
Te/mi

being the sound speed (with Te the electron temperature and mi the
thermal ion mass) and R0 being the major radius, and this is comparable
to the transit frequency of thermal ions: therefore, resonances with the
thermal ions substantially modify the EGAM frequency. Another reason
is that the damping and excitation mechanisms, i.e. respectively the
Landau damping and the inverse Landau damping, are intrinsically wave-
particle mechanisms. Moreover, resonances with electrons are found to
be important for a proper determination of the damping/growth rates of
modes of the family of the GAM, and therefore, when a comparison of
the theoretical predictions with experiments is desired, kinetic effects of
electrons should also be retained [53, 13]. Due to the fact that numerical
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simulations in 3D real space and 3D velocity space are numerically too
demanding for the present computational capabilities, and include much
physics which is not interacting with the EGAM due to separation of
scales, it is desirable to reduce the model complexity.

Due to the fact that the EGAM frequency is much lower than the
ion gyro-frequency, a reduction is possible from 6D to 5D in phase space,
with the gyrokinetic (GK) model, averaging out the fast cyclotron mo-
tion. Within the same regime of low-frequencies, the magnetic moment
µ can be considered as an invariant. Moreover, due to the axisymmetry
of the EGAM perturbation, i.e. n = 0, we have that Pφ is also an in-
variant [14]. The adoption of a GK model for the numerical simulations
strongly reduces the computational times. Nevertheless, a comparison
with even more simplified reduced models is essential to identify the
basic physics of the selected instability, and to push towards modeling
techniques which can act in real-time, in parallel to a tokamak discharge.
Such are 1D reduced models. The assumption of ∂Pφ/∂t = 0 helps us fur-
ther reducing the EGAM dynamics to that of a nonuniform system with
only one degree of freedom, i.e. the above-mentioned 1D reduced model.
This is at the basis for the paradigm of the EGAM as 1-1 correspondence
with the beam-plasma instability.

2.2 Main features of the GAM dynamics

in MHD theory

The nonuniformity of the magnetic field, via the geodesic curvature, en-
ters the dynamics of zonal (i.e. poloidally and toroidally uniform) electric
field oscillations giving rise to geodesic acoustic modes (GAM). The sim-
plest theoretical model to describe linear dynamics of GAMs is the ideal
MHD model [3], which is helpful to derive the order of magnitude of the
GAM frequency, but does not contain the physics of the wave-particle
resonance, necessary for example to estimate the GAM damping rate and
the EGAM growth rate. In this section, we adopt the ideal MHD model
with uniform equilibrium pressure profile as a basic starting point to
sketch the derivation of the dispersion relation and the energy channels
of the GAM oscillation, with a didactic aim. The GAM energy chan-
nels have been described in details in several works, like for example in
Ref. [54, 55, 56]. Here we just make a simple derivation which serves
as starting point. Next, we aim to an extension to kinetic theory [30],
where Landau damping is considered.
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We start with the ideal magnetohydrodynamic (MHD) model. The
three waves described by this model are the Shear Alfvén waves, the
Fast Magnetosonic waves, and the Slow Magnetosonic waves (i.e. acous-
tic waves). We want to study modes with acoustic polarization, therefore
we can neglect to the lowest order the magnetic perturbations (and as-
sociated current perturbations). Therefore, the model reduces to the
momentum equation and the equation of state:

̺
∂δv

∂t
= −∇δp (2.2)

∂δp

∂t
= −ΓP0∇ · δv (2.3)

Here ̺ is the mass density, δv the fluid velocity, and Γ the ratio of
the specific heats. Here δp and P0 are respectively the perturbed and
equilibrium pressures, with P0 assumed to be homogeneous for simplicity.

The perpendicular ExB velocity is excited in the so-called “Rosenbluth-
Hinton test”, by initializing a zonal (i.e. uniform in poloidal and toroidal
directions) radial electric field, which is then let evolve in time. The
magnetic field nonuniformity enters the dynamics via the geodesic cur-
vature, giving the name to the geodesic acoustic mode. The perturbed
ExB velocity is described in terms of the scalar potential as:

δv⊥ =
c

B2
B ×∇⊥δφ (2.4)

where, to lowest order, the scalar potential is zonal and therefore the
perpendicular gradient reduces to a radial derivative.

We now rewrite here the model equations, Eqs. 2.2 and 2.3, after
having applied the operator ∇ · (B/B2× ...) to the momentum equation,
Eq. 2.2. We obtain:

−∇ ·
( ̺c

B2

∂

∂t
∇⊥δφ

)
= −∇ ·

(
B

B2
×∇ δp

)
(2.5)

∂δp

∂t
= −cΓP0∇ ·

(
B

B2
×∇ δφ

)
(2.6)

In the following, we approximate B as uniform in the first term of Eq. 2.5,
and commutate with the differential operator, using the hypothesis of
small inverse aspect ratio (∂r ∼ r−1 ≫ ∂R ∼ R−1) and neglecting higher
order corrections in ε = r/R. On the other hand, the nonuniformity of
B will be kept in both right-hand-side terms of Eqs. 2.5 and 2.6.

We now take the time-darivative of Eq. 2.5, and we use Eq. 2.6 for
the time derivative of the pressure. The differential operator on the right
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hand side of Eqs. 2.5 and 2.6 can be rewritten as ∇ · B−2B × ∇ =
B−2(B × 2κ + O(B/qR)) · ∇⊥, where κ = b · ∇b is the curvature of
the equilibrium magnetic field, b = B/B being the unit vector. For
the present derivation, we are interested in estimating only the order
of magnitude of the GAM frequency, and therefore we retain only the
curvature term (where the curvature can be approximated as κ ≃ R/R2

by considering only the dominant contribute of the toroidal magnetic
field) and we neglect the 1/q corrections. We obtain:

c
∂2

∂t2
∇2

⊥δφ ≃ −ΓP0

̺
c
[(

B

B
× 2κ

)
·∇⊥

]2
δφ (2.7)

Due to the fact that the scalar potential is mainly zonal (∇⊥ = r̂∂r
in Eq. 2.7), the only component of the curvature entering the disper-
sion relation is the geodesic component κs, defined as twice the poloidal
component of the curvature κ in the plane tangent to the magnetic flux
surface: κs = r̂ · (b × 2κ) ≃ 2 sin θ/R. Finally, by averaging on a
magnetic flux surface, we obtain the natural frequency of oscillation of
GAM: ( ∂2

∂t2
+ ω2

GAM

)
∂2
r δφ = 0 (2.8)

where only the zonal component of the scalar potential δφ is considered
at the leading order, and the GAM frequency is given by:

ωGAM =

√
ΓP0

̺

√
〈κ2

s〉 =
√
2
cs
R

(2.9)

with 〈κ2
s〉 = 〈4 sin2 θ/R2〉 = 2/R2, with 〈...〉 being the flux-surface-

average operator. This dispersion relation gives the order of magnitude
of the GAM oscillation. Here an equation of state has been adopted in
our fluid model, whereas a kinetic theory would provide the GAM fre-
quency without dependence on this choice. Moreover, the wave-particle
resonances are neglected here and can be considered only in the frame-
work of a kinetic theory, giving quantitative modification to the real
part of the frequency and allowing us to estimate also the collisionless
(Landau) GAM damping rate and (inverse-Landau) EGAM growth rate,
which are strictly kinetic effects.

We now multiply Eq. 2.5 with δφ, and Eq. 2.6 with p/(ΓP0), to obtain
the energy channels:

− ̺

B2
c2δφ

∂

∂t
∇2

⊥δφ = −cδφ∇ ·
(
B

B2
×∇ δp

)
(2.10)

1

ΓP0
δp

∂δp

∂t
= −cδp∇ ·

(
B

B2
×∇ δφ

)
(2.11)
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Summing up the two equations, and using the vector identity f∇ ·A =
∇ · fA−A ·∇f , we obtain the energy theorem in its local form:

∂

∂t

(
ǫk + ǫp

)
= −∇ ·

(
B

B2
×∇ c δp δφ

)
(2.12)

where the kinetic and thermodynamic energy densities are given respec-
tively by:

ǫk =
1

2
̺ δv2⊥ , ǫp =

1

2

1

ΓP0
δp2 (2.13)

Here we have used
∫
δφ∇2

⊥δφ d3r =
∫
|∇δφ|2d3r. The energy theorem in

its global form is obtained by integrating over the volume in real space:

∂

∂t

(
Ek + Ep

)
= 0 (2.14)

where Ek =
∫
ǫk d

3r, Ep =
∫
ǫp d

3r. By defining V = (B×∇ c δp δφ)/B2,
we have that

∫
dS · V is totally zero if we take a magnetic flux surface

as external boundary of integration (where δφ = 0). Note that
∫
dS · V

plays the role of Poynting flux here.

2.3 Main features of the GAM dynamics

in kinetic theory

Here, we sketch a basic derivation of the GAM dispersion relation in
gyrokinetic theory. Several simplifications are done here, and this serves
only to show the structure of the calculation, which follows Ref. [4] (with
analogies with Ref. [30], invoking the BAE/GAM degeneracy). For more
complete derivations, the reader should refer for example to Ref. [57, 58,
4, 59, 6].

We consider here the electrostatic limit of the gyrokinetic model (i.e.
we neglect the magnetic perturbations), for a homogeneous plasma (i.e.
we assume that the equilibrium profiles have no gradients). The equilib-
rium distribution function for the species s is assumed to be Maxwellian.
The perturbed particle distribution function is written as a sum of the
adiabatic and non-adiabatic parts:

δfs = − es
Ts

F0sδ̃φ + δKse
iLks (2.15)

where δφ = δφ+ δ̃φ is the perturbed scalar potential, written as the sum
of the zonal (i.e. flux-surface averaged) and non-zonal (i.e. oscillatory on
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a flux surface) components. Note that for GAMs, we have that δφ ≫ δ̃φ.
Also, here Lks = (msc/esB)(k×B) · v.

The gyrokinetic (GK) equation in the drift-kinetic regime (i.e. ne-
glecting finite-Larmor-radius/finit-orbit-width effects, i.e. setting J0 = 1)
is:

(
ωtr∂l − i(ω − ωd)

)
s
δKs = −i

F0es
Ts

ω
(
δ̃φ+

(ωd

ω

)
s
δφ

)
(2.16)

where ∂l is the parallel derivative, ωtr = v‖/qR, and the drift frequency
for radially localized modes is ωds(θ) = ω̂ds g(θ), with:
ω̂ds = (k⊥msc/eBR)(v2⊥/2+ v2‖), g(θ) = sin θ. The Bessel function of the

zeroth order, J0 = J0(k⊥ρLi), denotes the gyroaverage operator.
The quasi-neutrality (QN), is derived by equating the densities of the

ions and the electrons, 〈δfi〉 = 〈δfe〉, where the angular brackets denote
the integration in velocity space. In its general form in the drift-kinetic
regime, this equation is written as:

(
1 +

1

τe

)
δ̃φ =

Ti

n0e

(
〈δKi〉 − 〈δKe〉

)
(2.17)

where τe = Te/Ti. Note that, up to here, ions and electrons have been
treated equally, with no assumptions on the adiabaticity of the electrons.
The vorticity equation, which can be derived from the QN equation, is:

ω2

v2A
k2
⊥δφ =

〈
∑

s

4πes
c2

ωωdsδKs

〉
(2.18)

Note that, in the derivation of the GAM dispersion relation, one needs
the gyrokinetic equation, Eq. 2.16, and either the QN equation or the
vorticity equation, which are equivalent for the derivation.

One of the first properties of GAMs we know from experiments and
numerical simulations, is that they have nearly m = 0 electric field,
which means δ̃φ ≪ δφ. Moreover, as GAMs are sound oscillations, the
expansion of the GK equation is done with the smallness parameter ǫ
which measures the ratio ωdi/ω ∝ krρi, i.e. the square root of the plasma
temperature. To the zeroth order, i.e. for temperature going to zero, we
predict no GAM oscillation of the distribution function, i.e. δK

(0)
s = 0.

Therefore, the dynamics of the GAM is given by the resolution for the
higher order component, δK

(1)
s .

For the electrons, having predicted already, by considerations on the
physics of the GAMs, that δK

(0)
e = 0 for both components (zonal and
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oscillatory), we now proceed with the oscillatory component of order
O(1):

ωtr,e∂lδ̃Ke

(1)
− iωδ̃Ke

(0)
= 0 ⇒ ∂lδ̃Ke

(1)
= 0 ⇒ δK(1)

e = 0 (2.19)

In summary, the adiabaticity of the electrons is naturally described by the
choice of the decomposition of the distribution function done in Eq. 2.15,
and for the electrons reads:

δKe = 0 (2.20)

As a consequence, the QN equation can be written as:

(
1 +

1

τe

)
δ̃φ =

Ti

n0e
〈δKi〉 (2.21)

We now focus on the expansion of the GK equation of the ions. By
taking the flux surface average of the gyrokinetic equation, we get:

ωδKi = 0 (2.22)

to all orders. We also recall that δK
(0)
i = 0 for both components (zonal

and oscillatory). Passing now to the next order, i.e. O(ǫ), we have

(
ωtr,i∂l − iω

)
δK

(1)
i = −i

F0e

Ti
ω
(
δ̃φ

(1)
+
(ωd,i

ω

)
δφ

(0)
)

(2.23)

We now proceed to the resolution of Eq. 2.23 for δK
(1)
i . We write the flux-

surface-averaged and oscillating fields in the following way: δKi
(1)

= δK0

(= 0) and δ̃Ki

(1)
= δKc cos θ0 + δKs sin θ0, and a similar notation is used

for δφ. We get:





δKc =
−iF0eω

T (ω2 − ω2
tr)

(
iωδφc + ωtrδφs + ωtr

ω̂d

ω
δφ0

)

δKs =
−iF0eω

T (ω2 − ω2
tr)

(
−ωtrδφc + iωδφs + iω̂dδφ0

) (2.24)

This is the desired resolution of the GK equation of the ions. The next
step, is to put δK into the QN. Before proceeding further, note that here,
the underlined terms, are those which will be killed by the integration in
velocity space, because odd (this assumes that F0 is even, which is the
case for the hypothesis of being a Maxwellian).

The last step of the derivation of the dispersion relation of GAMs is
the resolution of the vorticity equation. Before doing this, we need to
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write the oscillatory components of the scalar potential in terms of the
zonal component. This is done by putting δK into the QN, which we
also split into cosine and sine parts. We can then solve for δφc and δφs

as a function of δφ0:




δφc = 0

δφs =
I2(

1 + 1
τe

)
− I1

δφ0
(2.25)

where I1 and I2 are the following integrals in velocity space:

I1 =

∫
d3v

F0(
1− ω2

tr/ω
2
)
n0

= −ζ‖resZ(ζ‖res) (2.26)

and

I2 =

∫
d3v

F0(
1− ω2

tr/ω
2
)
n0

ω̂d

ω
= −2k⊥cT

eBR

ζ‖res
ω

(
ζ‖res+

(1
2
+ζ2‖res

)
Z(ζ‖res)

)

(2.27)
where the integration in velocity space has been performed in cilyndrical
coordinates

∫
d3v = 2π

∫∞

0
dζ⊥ ζ⊥

∫∞

−∞
dζ‖, with ζ = v/vt, vt =

√
2T/m,

ζ‖res = v‖res/vt, v‖res = qRω. We have also introduced the plasma dis-

persion function Z(z) = π−1/2
∫∞

−∞
e−y2/(y − z)dy. This result can be

cast in the following form:




δφc = 0

δφs = −2k⊥cT

eBR

1

ω

N(ω/ωt)

D(ω/ωt)
δφ0

(2.28)

with ωt = vt/qR, and:




N(z) = z +
(1
2
+ z2

)
Z(z)

D(z) =
1

z

(
1 +

1

τe

)
+ Z(z)

(2.29)

Note that the ordering of δ̃φ/δφ adopted, is verified here a posteriori, as
δφs satisfies δφs/δφ0 ∝ krT/(RΩiω) ∝ ωd/ω. Note also that, when the
electron temperature vanishes, i.e. τe → 0, the GAM has a pure zonal
electric field, i.e. δφs = 0, because D → ∞.

We are now ready to solve the vorticity equation. This is taken at
the first order, and a flux-surface average is performed:

ω2

v2A
k2
⊥δφ

(0) =

〈
4πe

c2
ωωd(θ)δK(1)

〉
=

〈
2πe

c2
ωω̂d δK

(1)
s

〉
(2.30)
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When considering the several terms of δK
(1)
s in Eq. 2.24, we note again

the the underlined terms are killed by integration in velocity space, be-
cause odd (again, we assume here F0 being even). We obtain the following
equation:

ω2

ω2
t

+
q2

4n0

(
I3 + I4

)
= 0 (2.31)

where

I3 = − 8n0

π1/2

N(ζ‖res)

D(ζ‖res)

∫ ∞

0

dζ⊥

∫ ∞

−∞

dζ‖ ζ⊥
exp(−ζ2‖ − ζ2⊥)

ζ2‖ − ζ2‖res
ζ2‖res

(ζ2⊥
2

+ ζ2‖

)
=

= −4n0ζ‖res
N(ζ‖res)

2

D(ζ‖res)
(2.32)

and

I4 =
8n0

π1/2

∫ ∞

0

dζ⊥

∫ ∞

−∞

dζ‖ ζ⊥
exp(−ζ2‖ − ζ2⊥)

ζ2‖ − ζ2‖res
ζ2‖res

(ζ2⊥
2

+ ζ2‖

)2

=

= 4n0ζ‖resF (ζ‖res) (2.33)

Finally, the result is the desired dispersion relation of GAMs, in implicit
form in the complex plane [4] (see also Ref. [30] for the analogous deriva-
tion for low-frequencies Alfvén modes):

z + q2
(
F (z)− N2(z)

D(z)

)
= 0 (2.34)

with z = ω/ωt, and with F defined by:

F (z) = z
(
z2 +

3

2

)
+
(
z4 + z2 +

1

2

)
Z(z) (2.35)

Note again that, in the limit of vanishing electron temperature, i.e. τe →
0, then the dispersion relation becomes z+q2F (z) = 0, because D → ∞.

In the limit of moderate values of the safety factor q (typically 1.5 <
q < 3, for moderately low values of wavenumber), explicit formulas for
the GAM frequency and growth rate can be obtained from Eq. 2.34 (see
Ref. [58]):

ω

qωt
= f

1/2
T

(
1 +

1

q2
fS1
f 2
T

)1/2

(2.36)

γ

qωt

= −
√
π

2
q3fT

[
exp(−x2) (x2 + 2τe + 1)

+
q2

4
k2
rρ

2
i exp

(
− x2

4

)( x4

128
+ fS2x

2 + fS3

)]
(2.37)
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with x = ω/ωt = ℜ(z), ρi =
√
2Ti/mi/Ωi, fT = 7/4 + τe and fS1 =

23/8 + 2τe + τ 2e /2, fS2 = (1 + τe)/16, and fS3 = 3/8 + 7τe/16 + 5τ 2e /32
(with Ωi being the ion cyclotron frequency).

2.4 The beam-plasma instability and the

EGAM

In this dissertation, we investigate the linear dynamics of EGAMs due
to inverse Landau damping and the nonlinear dynamics of EGAMs due
to wave-particle nonlinearity. A strong analogy between the EGAM and
the beam-plasma instability (BPI) [60, 61] exists (see [43, 62]). The BPI
is basically a mono-dimensional (1D) problem, where the Langmuir wave
is driven unstable by a beam of fast electrons. Although the Langmuir
wave has a different physics with respect to sound waves, and lives in
a higher frequency domain, nevertheless both the BPI and the EGAM
are driven by a suprathermal species (fast ions for the EGAM, fast elec-
trons for the BPI) via inverse Landau damping. Moreover, although the
EGAM is a 2D problem in an equilibrium toroidal magnetic field, its
excitation mechanism, i.e. the inverse Landau damping, acts mainly in
one direction, namely the direction parallel to the local equilibrium mag-
netic field (although it should be noted that in a more complete model,
an EGAM can be excited by any kind of nonuniformity in velocity, and
not only in the parallel direction, but also in radial direction, and also
by trapped particles). Therefore, once a proper mapping is made, both
instabilities can be investigated in terms of an inverse Landau damping
problem in a 1D system.

The basic properties of the EGAM linear excitation mechanism are
those of the (inverse) Landau damping. It is worth to recall here the
result of the Landau damping for the BPI problem, derived in the Vlasov-
Poisson model. In this problem, the essential dynamics is that of the
electrons, and the ions only act as a charged static background. Calling
the plasma frequency ωp and the wavenumber k, one obtains [60]:

γL =
π

2

ω3
p

k2

∂f0
∂v

∣∣∣
ω/k

(2.38)

Note that, if the resonance velocity ω/k falls in a region where the deriva-
tive of the distribution function in velocity space is negative, Eq. 2.38
describes a damping. This is always the case if the equilibrium distribu-
tion function is a Maxwellian. On the other hand, if an energetic beam
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is present, described as a shifted Maxwellian, then the situation can oc-
cur where the resonance velocity falls in a region where the derivative is
positive. In this latter case, Eq. 2.38 describes a drive - this is the case
analogous to the EGAM in tokamak plasmas. For a detailed derivation
of the EGAM dispersion relation in gyrokinetic theory, the reader should
see, for example, Ref. [14, 42, 43, 63, 64, 6].

In the EGAM system, the equilibrium magnetic field is not uniform
but has a toroidal shape. In general, particles moving in a toroidal mag-
netic field can perform passing orbits, i.e. follow the magnetic field on
both low-field side and high-field side, or perform banana orbits in the
space restricted to the low-field side of the tokamak. By construction,
in the EGAM problem considered here, the energetic ions are initialized
with a bump-on-tail distribution function (beam distribution), with a rel-
atively high parallel mean velocity along the equilibrium magnetic field,
plus a smaller isotropic thermal distribution around the mean velocity.
Due to the relatively high parallel velocity, the time derivative of their
toroidal angle never vanishes (and therefore banana orbits of the EP in
the low-field side are not considered in the present treatment). During
their motion which is, to the leading order, directed along the equilib-
rium magnetic field, they perform small drifts towards higher values of
the minor radius, and then towards lower values of the minor radius,
known as the curvature and grad-B drifts. These drifts have zero time
average: this defines orbits with an average radial position plus a radial
orbit width.

The radial electric field of the EGAM can exchange energy with the
energetic particles, due to their radial component of the trajectories, and
in particular of the curvature drift [43]: vdc = (v2‖/ΩEP )B × ∇B/B2.
Due to the structure of the perturbed distribution function, the effective
parallel wavenumber of the EGAM is k‖ = 1/qR, the phase-angle is

Θ = θ − ωEGAMt and its normalized time derivative is Θ̇/ωEGAM =
(v‖−v‖r)/qRωEGAM . In terms of the phase angle, the energetic particles
experience a periodic electric field, and their harmonic motion can be
expressed as [43]:

Θ̈

ω2
EGAM

= − ω2
b

ω2
EGAM

sin Θ , (2.39)

where ωb is the bounce frequency of the energetic particles in the potential
created by the wave. Using these considerations, the analogy with respect
to the 1D beam-plasma instability (BPI) turns out to be evident. In fact,
the BPI is described as given by a Langmuir wave, excited by a beam
of energetic electrons along a given direction x. The Langmuir wave
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has a perturbed electric field directed along x, oscillating at the plasma
frequency ωp =

√
nee2/meǫ0. Therefore, for both the EGAM and the

BPI, the linear and nonlinear dynamics is determined by the motion of
the energetic particles in the perturbed field, which is essentially a 1D
motion.

2.5 From the linear to the nonlinear dy-

namics

While GAMs are observed in tokamaks plasmas because they are nonlin-
early driven by turbulence, EGAMs are driven unstable by the nonuni-
formity of the EP distribution function in velocity space, due to inverse
Landau damping. Therefore, EGAMs can be observed, if the linear EP
drive is above a certain threshold, given by the balance with the Landau
damping due to the thermal plasma. In the absence of EP, the dispersion
relation shows the existence of an infinite number of zonal solutions oscil-
lating with frequencies of the order of the sound frequency. One of them,
the least damped, is the GAM, and the other ones are more strongly
damped, and they are called Landau poles, originating as solutions of
the plasma dispersion function. In different regimes, the addition of EP
can drive an EGAM unstable starting from a GAM, or from a Landau
pole, depending on how the resonances are matched (see Ref. [14, 64]).

In tokamak plasmas, EGAMs can grow unstable due to the drive of
EP, and can significantly affect the EP redistribution in phase space. The
level of importance of this redistribution is proportional to the amplitude
of the EGAM electric field. Although a linearly unstable EGAM grows

Figure 2.1: Schematic representa-
tion of the phase space of electrons for
the BPI problem (from Ref. [60]).

exponentially, the effect of nonlin-
earities is to modify the dispersion
relation and eventually to yield a
saturation. Two main nonlineari-
ties can be responsible of the sat-
uration: wave-particle nonlinearity
and wave-wave nonlinearity. Due
to their nature of EP-driven insta-
bilities, EGAMs, like the BPI, sat-
urate primarily due to the wave-
particle nonlinearity, i.e. due to the
nonlinear inverse Landau damping.
This means that, when reaching a
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certain amplitude, the EGAM electric field can displace the EP in the
direction of the parallel velocity in phase space. Higher velocity particles
lose energy, transmitting it to the EGAM field, and the effect is a flat-
tening of the EP distribution function near the resonance. With respect
to the potential wells created by the wave, the passing particles which
lose energy can become trapped, and stop exchanging energy with the
mode. A schematic picture of the island of passing and trapped particles
is shown in Fig. 2.1, for the electrons responsible of the linear growth and
nonlinear saturation of the BPI. Wave-wave nonlinearity can also occur
for EGAMs, for example via generation of zero-frequency zonal flows, or
of a second harmonic. In this case, the nonlinearity is predicted to be
dominantly mediated by the EPs [65], rather then by thermal plasma
nonlinearities.

Not only the linear dynamics, but also the nonlinear wave-particle
dynamics has strong analogies for the two instabilities. In particular,
the bounce frequency of the EP which fall trapped into the perturbed
electric field is proportional to the square root of the perturbed electric
field [43, 66], and the saturated electric field is proportional to the square
of the linear growth rate [66, 67], as shown in Sec. 4.2. As a consequence,
the question arises whether also the EP redistribution in phase space
can be described with similar models for both instabilities. This will be
discussed in Sec. 4.3.

The comparison of the nonlinear EP redistribution in velocity for
the EGAM and the BPI is the problem faced in this dissertation. The
BPI is studied here with a 1D code treating the thermal plasma as a cold
dielectric medium and describing the dynamics of the fast electrons as an
N-body problem solved with an Hamiltonian formulation [68, 69, 70]. A
mapping of the velocity space for the EGAM system and for the bump-on-
tail paradigm for the BPI is also formulated, allowing to find a one-to-one
correspondence between EP redistribution studied in the two problems.

2.6 The numerical models

The choice of the model for the investigation of the dynamics of GAMs
is dictated by their specific spatial and temporal characteristic scales. In
particular, GAMs are zonal electric field oscillations (i.e. with toroidal
and poloidal mode numbers equal to zero) with radial wavelength bigger
than (or in same case of the order of) the ion Larmor radius, and time
scales of the order of the sound time ∼ 2πR/cs. The basic physics is the
one of the sound waves, therefore the MHD description is sufficient for
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estimating the order of magnitude of the frequency of the mode [3]. Nev-
ertheless, such spatio-temporal scales make the need of a kinetic treat-
ment clear. This is due to the importance of resonances with passing
ions, which can determine frequency and damping rate of the modes.
Considering the requirements for the spatial scales, and the frequencies
being lower than the ion cyclotron frequency, we can easily see that the
gyrokinetic model [71, 72, 73, 74, 75, 76, 77] is the most appropriate tool.

ORB5 is a nonlinear gyrokinetic code based on a particle-in-cell (PIC)
algorithm. The basic discretization scheme of a PIC code (also known
as “Lagrangian” code), for the Vlasov-Maxwell problem, is presented in
Ref. [78]. A PIC code discretizes the distribution function with macro-
particles, also known as markers, associated with weights. In a gyroki-
netic PIC code, the markers are pushed along the trajectories derived
from the gyrokinetic model while the fields are known on a spatial grid
and evolved by solving the gyrokinetic field equations either with finite
differences or with finite element methods. The sources (charge density
and current density) needed for solving the field equations are calcu-
lated by projecting the marker weights on a spatial grid. In ORB5, the
distribution function is written as a sum of an analytical background
distribution function and the perturbed distribution function, which is
represented using markers via a control-variate Monte Carlo method,
hystorically known as δf PIC [79] (see Ref. [88] for a recent overview).

ORB5 was originally developed for electrostatic turbulence studies [85].
In the last few years, it has been extended to the electromagnetic, multi-
species version [16, 88]. In most of the results shown in this dissertation,
we use the electrostatic version of ORB5 (except in Sec. 3.4.3, where the
electromagnetic version of ORB5 is used), therefore we describe only the
electrostatic model here. Only collisionless simulations are considered in
this dissertation. No flux-tube version of ORB5 exists - only global ORB5
simulations are considered. The model equations of ORB5 are derived in
a Lagrangian formulation [88], based on the gyrokinetic Vlasov-Maxwell
equations of Sugama, Brizard and Hahm [76, 77].

The gyrocenter trajectories describe the motion of the markers of
the kinetic species in phase-space coordinates written in p‖-formalism,
Zp‖ = (R, p‖, µ), i.e. respectively the gyrocenter position, canonical par-

allel momentum p‖ = msv‖ and magnetic momentum µ = msv
2
⊥/(2B)

(with ms and qs being the mass and charge of the species). v‖ and v⊥
are respectively the parallel and perpendicular component of the particle
velocity. Note that here we describe the ORB5 model in the electro-
static limit (for the electromagnetic model of ORB5, the reader should
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refer to Ref. [16]). The gyroaverage operator is labeled in this subsec-
tion by the tilde symbol ˜ . The gyroaverage operator reduces to the
Bessel function J0 if we transform into Fourier space. In all simulations
with ORB5 shown in this dissertation, the gyroaverage is always calcu-
lated by considering non-vanishing Larmor radius for the ions, whereas
it is calculated with zero argument for the electrons. In other words,
finite-Larmor-radius (FLR) effects are retained for ions and neglected
for electrons. The code ORB5 is based on straight-field-line tokamak
coordinates. Dirichlet boundary conditions on the fields are imposed in
the radial direction, while periodicity is assumed in the two angles. The
nonlinear version of the trajectories is [88]:

Ṙ =
1

ms
p‖
B∗

B∗
‖

+
c

qsB∗
‖

b×
[
µ∇B + qs∇φ̃

]
(2.40)

ṗ‖ = −B∗

B∗
‖

·
[
µ∇B + qs∇φ̃

]
(2.41)

µ̇ = 0 (2.42)

Here, the time-dependent fields are the scalar potential φ and the parallel
component of the vector potential A‖, and B∗ = B + (c/qs)∇ × (b p‖),
where B and b are the equilibrium magnetic field and magnetic unitary
vector. The linearization of this model is performed by pushing the
markers along unperturbed trajectories:

Ṙ =
p‖
ms

B∗

B∗
‖

+
c

qsB∗
‖

b× µ∇B (2.43)

ṗ‖ = −B∗

B∗
‖

· µ∇B (2.44)

In this dissertation, the electrons are always treated with an “adiabatic”
model except in Sec. 3.4.3 (where they are treated as drift-kinetic). In this
“adiabatic” model, the electron gyrocenter density is calculated directly
from the value of the scalar potential as [88]:

ne(R, t) = ne0 +
qsne0

Te0

(
φ− φ̄

)
(2.45)

where φ̄ is the flux-surface averaged potential. The quantities with sub-
script “0” refer to the equilibrium, and are functions of the radial coor-
dinate ρ only.

The equation for solving the scalar potential is the gyrokinetic Poisson
equation, also known as polarization equation. This is derived from the

30



gyrokinetic Lagrangian of ORB5, using the variational derivation, and
imposing that the ExB drift energy of the particles is larger than the
field energy (quasi-neutrality condition) [88]. The gyrokinetic Poisson
equation is [88]:

−∇ · n0mic
2

B2
∇⊥φ =

∑

s

∫
dWqs ˜δfs (2.46)

with n0mi being here the total plasma mass density (approximated as the
ion mass density), and the summation over the species is performed when
the electrons are treated as kinetic, otherwise the electron contribute is
given by −ne(R, t). Here δf = f − f0 is the gyrocenter perturbed dis-
tribution function, with f and f0 being the total and equilibrium (i.e.
independent of time, assumed here to be a Maxwellian) gyrocenter dis-
tribution functions. The integrals are over the phase space volume, with
dW = (2π/m2

i )B
∗
‖dp‖dµ being the velocity-space infinitesimal. The gy-

rokinetic Poisson equation is solved with a finite element method, by
using B-splines in all the spatial directions.

Eqs 2.40, 2.41, 2.45, 2.46 are the constitutive equations of the model
of ORB5 used in this dissertation for studying the collisionless dynamics
of EGAMs. In the electromagnetic version, the Ampère equation is also
solved for calculating the time evolution of the parallel component of the
vector potential A‖.

The Gyrokinetic Electromagnetic Numerical Experiment (GENE) code,
is also a nonlinear gyrokinetic code originally developed for electromag-
netic turbulence studies in the flux-tube (i.e. local) limit [80], recently ex-
tended to its global representation [93]. The model of GENE is also based
on the gyrokinetic Vlasov-Maxwell equations of Brizard and Hahm [77].
Intra- and inter-species collisions (both pitch angle and energy scattering)
are implemented. In this dissertation, only the linearized electrostatic
collisionless version of GENE is used.

GENE is a Eulerian code. In a Eulerian description, the distribution
function is not discretized with markers, but it is discretized on a 5D
fixed grid in phase-space. The gyrokinetic equation is then solved on
this grid for each species s. The coordinate system of GENE in the 5D
phase space is written in v‖-formalism, Zv‖ = (R, v‖, µ), i.e. respectively
the gyrocenter position, parallel velocity and magnetic momentum.

As mentioned above, the linear physical models of ORB5 and GENE
are equivalent, and no difference in the results is expected for the linear
collisionless GAM/EGAM dynamics, depending on that. Nevertheless,
the numerical schemes are different. Moreover, the existence of the two
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representations of GENE, namely the global and the local (i.e. flux-tube)
representations, offers the possibility to solve the model equations in two
independent ways.

The GYrokinetic SEmiLAgrangian code (GYSELA) is also a nonlin-
ear 5D gyrokinetic code [94]. The GYSELA code is dedicated to elec-
trostatic Ion Temperature Gradient (ITG) turbulence with possibility to
address transport of impurities (not treated here). Electrons have been
assumed adiabatic in the previous versions, but a kinetic version has
been recently developed and it is now in the test phase. GYSELA is a
global full-f flux-driven code which addresses turbulent and neoclassical
transports on an equal footing.

GYSELA is a global code with a toroidal geometry with a simplified
concentric circular magnetic configuration. Its coordinate system in the
5D space is written as GENE in v‖-formalism, Zv‖ = (R, v‖, µ) but where
R = (r, θ, ϕ) with r the radial direction and θ and ϕ the poloidal and
toroidal geometric angles. GYSELA is a full-f code, namely the back re-
action of turbulent transport is accounted for in the time evolution of the
equilibrium. In such a framework, the turbulence regime is evanescent
if no free energy is injected in the system. A flux-driven version of the
code is available since 2009 [87], where the system can be driven by a pre-
scribed volumetric source, versatile enough to allow for separate injection
of heat, parallel momentum and vorticity. However in this dissertation,
the temperature and density profiles are constant and therefore we only
use the forcing governed by the two equal thermal baths at the two radial
boundaries. A linearized multi-species collision operator is implemented
in the code [95] but here only collisionless simulations are considered.

The numerical scheme of GYSELA is based on a semi-Lagrangian
method [96] (more specifically on a “backward semi-Lagrangian approach”),
which is a mix between PIC and Eulerian methods exhibiting good prop-
erties of conservation [97]. In this method, the phase-space mesh grid is
kept fixed in time (like in Eulerian codes) and the Vlasov equation is
integrated along the trajectories (like in PIC codes) using the invariance
of the distribution function along the trajectories (Liouville theorem).
In GYSELA, the interpolation step is presently performed with cubic
splines. Like for ORB5 and GENE, the model equations of GYSELA are
based on the gyrokinetic equations of Brizard and Hahm [77].

In summary, the three numerical codes ORB5, GENE and GYSELA,
adopt equivalent physical models. All these codes solve the ion dynamics
based on the gyrokinetic equations (see for example Ref. [71, 72, 73, 74]
for some early derivations, or Ref. [77] for a recent comprehensive review).
On the other hand, these three codes solve the model equations in three

32



different ways: ORB5 [85, 16, 88] is Lagrangian (i.e. particle-in-cell),
GENE [80, 93] is Eulerian, and GYSELA [97, 94] is semi-Lagrangian.
Some of the differences in the physical models are the sources for the
nonlinear simulations of turbulence, and the possibility of having elon-
gated magnetic equilibria of ORB5 and GENE (whereas GYSELA as-
sumes circular magnetic equilibria).

The importance of having a package of three codes with different
solvers relies on the trustability achieved in the physical results. To this
extent, linear and nonlinear simulations obtained with this package give
a more rigorous basis for the physical interpretation, the comparison with
the analytical theory, and the prediction of experimental measurements.
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Chapter 3

Linear dynamics

In the previous chapter, the derivation of the basic features of GAMs
and EGAMs has been sketched within the framework of the MHD and
gyrokinetic theories. In this chapter, the linear dynamics of GAMs and
EGAMs is studied numerically, and the results compared with the an-
alytical predictions. This serves as a test for different numerical codes,
which are supposed to recover the analytical scalings in the appropriate
limits, in the process called “verification and benchmark”. In this pro-
cess, the limits of the different models are reveiled. For example, one can
see that the numerical resolution in phase space of particle-in-cell codes
like ORB5 (i.e. the number of markers approximating the distribution
function) must be largely increased when the damping/growth rate of
the mode is small, in order for the signal to be well visible on top of the
statistical numerical noise. This process also serves for understanding
better the regimes of validity of the different analytical formulas. We
start with the description of the linear dynamics of GAMs, i.e. when
no EP population is present, then we investigate the effect of EP, for a
simplified case which will be used for the nonlinear studies, and for a
case which is selected for the linear comparison with experiments.

3.1 Linear GAM dynamics

In this section, the linear dynamics of GAMs is investigated with the
numerical codes ORB5, GENE and GYSELA, and compared with an-
alytical formulas (the results shown here are taken from Ref. [81]). As
described in the previous chapter, the physics of GAMs is the physics of
acoustic eigenstates of a tokamak geometry. Therefore, the characteris-
tic frequency is the sound frequency, proportional to the sound velocity
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cs =
√

Te/mi and inversely proportional to the characteristic tokamak
size R0. On the other hand, it is more interesting to investigate the ef-
fect of second-order features of the magnetic field geometry. Here, we
take as an example, the dependence on the safety factor q, describing the
helicity of the magnetic field lines. As described in the previous section,
this enters mainly as an estimate of the length of the field lines, and
consequently of the time taken by the particles to complete an orbit in
the direction parallel to the field lines (see Eqs. 2.36 and 2.37).

For the simulations shown in this section, we have considered an an-
alytical equilibrium with concentric circular flux surfaces. We choose
a tokamak equilibrium with high aspect ratio (ε = a/R0 = 0.1), with
R0 = 1.3 m, a = 0.13 m. The value of the magnetic field on axis is
B0 = 1.9 T. Each simulation has a different flat q-profile. Flat tem-
perature and density profiles are also always considered. The value of
ρ∗ = ρs/a (with ρs = cs/Ωi) is chosen as ρ∗ = 1/160. A zonal (i.e. ax-
isymmetric) radial electric field is initialized at t=0, then it is observed
to oscillate in time, and damp due to Landau damping. The frequency is
measured for different simulations with different value of q, obtained with
ORB5, GENE and GYSELA, and it is found to scale correctly with the
theoretical dispersion relation Zonca-1996 [30], and the explicit formula
Sugama-2006 / Sugama-2008 [58], as shown in Fig. 3.1. In particular,
note that the value of the frequency tends to ωq→∞/qωti = 1.66 for large
values of q. Some minor differences are found at low values of q in the
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Figure 3.1: Frequency (on the left) and damping rate (on the right), mea-
sured with ORB5 (Xs), GENE (crosses), and GYSELA (stars), and com-
pared with the analytical formulas of Sugama-2006 / Sugama-2008 [58]
(Eqs. 2.36 and 2.37, green lines) and Zonca-1996 / Zonca-2008 [30, 4]
(Eq. 2.34, black lines) (from Ref. [81]).
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results of the dispersion relations (due to the hypothesis of large q con-
sidered by Sugama for the calculation of the explicit formula).

The dependence of the damping rate on q has also been studied,
for the same simulations (see Fig. 3.1). All codes match well with the
analytical predictions of Zonca-1996 at low values of q (q ≤ 1.5). This is
the regime where the orbits of the passing ions can be approximated as
mainly directed along the magnetic field lines. For larger values of q, the
passing ions experience orbits with a finite periodic motion in the radial
direction. The radial width of their orbit becomes not negligible, and
the modification of the resonant properties affects the dispersion relation
(especially regarding the imaginary part of the frequency). Therefore, at
larger values of q (q > 1.5), the finite-orbit-width (FOW) effects included
at the first order in the explicit formula Sugama-2008 are shown to be
dominant. All codes fit well with Sugama-2008 for values of q smaller
than 3.5. At even larger values of q (q ≥ 3.5) the higher-order FOW
effects become dominant, and deviations from the formula Sugama-2008
are observed (see Ref. [81] for a dedicated discussion). The difference at
large q between the flux-tube version of GENE (which agrees perfectly
with ORB5) and the global version of GENE is due to the fact that the
kr used for global GENE runs was slightly larger. For this value of ρ∗,
the choice of krρi = 0.055 requires to simulate the entire domain in minor
radius, while simulations of global GENE accounted only for 98% of it.
This affects only the high q, i.e. when the damping is very small and the
relative effect of kr is large. Values of damping rates larger than ORB5
at large values of q are also observed with GYSELA, probably because
the value of kr has been observed to evolve in time towards values which
are a bit larger than at the initial time of the simulations with GYSELA,
and this increases the averaged damping rate.

As described in this section, the investigation of the linear properties
of GAMs, like the frequency and damping rate, and the dependence on
features of the equilibrium (like for example the magnetic field helicity
given by the safety factor q, considered here as an example), shed light
on the regimes of validity of the analytical theories and help understand-
ing the behavior of the numerical codes. In the next section, a similar
excercise is performed in the presence of energetic particles.

3.2 Linear EGAM dynamics

Here, we show results of GAMs with energetic particles described in
Ref. [90]. The equilibrium profiles were originally chosen for simulations
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performed with GYSELA [86, 87] and described in Ref. [63]. These are
flat equilibrium temperature and density profiles and a nearly flat q pro-
file. They are expected to behave as local simulations, due to the fact
that the profiles are nearly flat. Results of electrostatic simulations are
shown, with electrons treated adiabatically. In previous section, ORB5
has been successfully benchmarked on GAMs against analytical theory
for linear simulations falling into this limit. In particular, in this re-
port we show some first results of simulations with ORB5 where also an
energetic particle population is present. At this step we consider with
ORB5 a bump-on-tail EP population (see Ref. [63]). The dependence,
in the linear phase, of frequency and growth/damping rates of GAMs
and EGAMs on EP concentration is shown, and compared with results
of GYSELA shown in Ref. [63].

We choose a tokamak equilibrium with circular flux surfaces and mod-
erate aspect ratio (R0 = 1 m, ε = a/R0 = 0.3125), B0 = 1.9 T, with flat
equilibrium temperature and density profiles (we choose τi = Ti/Te = 1
and ρ∗ = ρs/a = 1/64). Very low values of shear are considered at the
center of the simulation box, where the measurements are done, so that
the q profile is nearly constant with value q = 3, and our simulations are
therefore expected to match local theory. The radial domain is chosen in
the range 0.2 < ρ < 0.8. In the inner half of the radial domain the value
of the safety factor is always very near q = 3, with a maximum around
s = 0.25 (s is the squared root of the poloidal magnetic flux, used here
as radial coordinate). In the outer half of the radial domain, the safety
factor increases to reach the value of q = 3.25 at the edge. Some simu-
lations are also performed with flatter q profile and no difference in the
results is observed. We initialize at t = 0 a charge density perturbation
of the form sin(πr/a), which has a radial gradient but is independent of
the poloidal and toroidal angle. In ORB5, a bump-on-tail distribution
function for the EP population is implemented at the initialization of our
simulations, t = 0, like in Eq. 27 of Ref. [63]:

Feq,h = FM,he
− ζ̄2

2T̂h cosh
( ζ̄ ζ
T̂h

)
(3.1)

where FM,h = nh

(2πTiT̂h/m)3/2
e
− ζ2+2µ̄

2T̂h . We choose the hot ion normalized

temperature as T̂h = Th/Ti = 1 and the normalized mean parallel ve-
locity of hot ions as ζ̄ = v‖/vti = 4. The parallel velocity variable is

ζ =
√
2(E − µB)/m/vth. The perturbation is let evolve in time with

electrostatic simulation with adiabatic electrons.
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Figure 3.2: Frequencies and growth rates of GAMs and EGAMs vs fast
ion relative concentration, normalized with the theoretical value given
in the absence of fast ions in Fig. 8,9 and 10 of Ref. [63], ωth,zarz =
0.0125Ωi. Green and black points are respectively nonlinear and linear
results of ORB5 (a.k.a. NEMORB in 2014-2015), whereas red points are
results obtained with GYSELA and described in Ref. [63] (from Ref. [81]).

In a typical run we observe oscillations of Im(φ10), which is the imag-
inary part of the complex Fourier transform in θ of the zonal component
(n=0) of the scalar potential φ (in other words, Im(φ10) is the Fourier
coefficient of φ in θ relative to the sin(θ) component). The typical period
of the oscillations is of the order of the sound time τs ∼ R/cs. We can
observe the coexistence of two modes with different frequencies, where
one is damped (GAMs) and one is growing (EGAMs). In the late phase
we can observe a nonlinear saturation of the EGAM. In our simulations,
we filter out all perturbations with toroidal mode number n 6= 0. There-
fore, even though our simulations are nonlinear, no interaction with ITG
or TEM turbulence is studied at this stage. The frequency of the modes
is measured by performing a Fourier transform in time of Im(φ10) at the
mid radius, s = 0.5. Two main frequencies are detected: the higher fre-
quency corresponds to GAMs and the lower to EGAMs. The growth rate
of EGAMs is measured by performing a linear fit in logarithmic scale of
the absolute value of Im(φ10).

A scan of the frequency and growth rate of GAMs and EGAMs is
shown in Fig. 3.2, vs the relative EP concentration nh/ni. Two set of
simulations of ORB5 are shown: a set of nonlinear simulations, and a set
of simulations performed with the linearized version of ORB5. In the non-
linear simulations, the trajectories are pushed using the Liouville theorem
(see Ref. [90] for more details). We can see that results of nonlinear sim-
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ulations performed with ORB5 agree with those of GYSELA described
in Ref. [63]. GAMs are always damped and their frequency is difficult to
measure for EP concentration higher than the EGAM instability thresh-
old. On the other hand, we find EGAM frequency difficult to measure
for EP concentration lower than nh/ni = 0.05. Regarding the growth
rates of EGAMs, we observe a very good agreement of ORB5 nonlinear
simulations with GYSELA, with an instability threshold at nh/ni ≃ 0.15
and an almost linear dependence on nh/ni. Slightly higher values of γ are
found right above the threshold. Regarding simulations performed with
linearized version of ORB5, we observe a general qualitative agreement
with the nonlinear simulations, except for the frequency of GAMs, which
is lower in linear simulations than in nonlinear simulations, and growth
rates of EGAMs, which are higher in linear simulations than in nonlinear
ones. This difference in the results is probably due to the fact that in
the linear model we have chosen to initialize the EP distribution function
as a function of constants of motion only, by neglecting the unperturbed
terms in dζ/dt in the Vlasov Equation. In the nonlinear model the initial
distribution function is not an equilibrium and slowly evolves during the
simulation. This could lead to the excitation of EGAMs for values of nH

slightly different from the ones in the linear simulation.
Next, we repeat a similar study as the one described above, with

GENE and ORB5, studying the EGAM linear growth rates and frequen-
cies for different fast particle concentrations in magnetic geometries with
circular flux surfaces. These results are published by A. Di Siena in
Ref. [49]. Electrons are considered adiabatic and at t = 0 a density
perturbation of the form n1(s, t0) ∼ sin(πs) is initialised and Dirichlet

Figure 3.3: Frequency (left) and growth rate (right) of EGAMs as a func-
tion of the EP concentration for a case with circular flux surfaces and
q=3, obtained with GENE and ORB5 [49].
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boundary conditions are applied. Here, s =
√

Ψp/Ψp,edge represents the
radial coordinate with values in [0, 1] and Ψp the poloidal flux. Both
GENE and ORB5 consider the double bump-on-tail distribution func-
tion while a local Maxwellian is maintained for the main (thermal) ion
species.

The considered magnetic equilibrium is the same as in the benchmark
of ORB5 and GYSELA described above. Here, flat temperature and
density profiles have been considered with the radial coordinate which
goes from 0 < s < 1. The EP and bulk ion temperatures (Te = Ti = TEP )
are fixed by the choice of ρ∗ = ρs/a. In the following two different values
of ρ∗ have been used, i.e. ρ∗ = 1/64 and ρ∗ = 1/128. The reference
density, is a free parameter in collisionless electrostatic simulations as
none of the physics inputs is constrained by this value and the chosen
linear observables do not depend on the density either. Furthermore,
the value of v̄q, which determines the magnitude of the shift in vq, has
been fixed to 2.83 in units of ion thermal velocity (= 4 in ORB5 units).
In Fig. 3.3 EGAM growth rates and frequencies obtained for different
energetic ion concentrations at s = 0.5 are compared between GENE
and ORB5 for a flat q-profile = 3, i.e. shear = 0 and for ρ∗ = 1/64 and
ρ∗ = 1/128. The theoretical values of the EGAM frequencies and growth
rates have been taken from Ref. [64].

The differences between the GENE and ORB5 results are as the order
of 7% for ρ∗ = 1/64, which reduce to ∼ 5% for ρ∗, i.e. ρ∗ = 1/128. The
agreement between the codes improves even further if the value of the
flat q-profile is reduced to 2 (see Ref. [49]).

3.3 Case selection for nonlinear EGAM stud-

ies

3.3.1 Equilibrium and simulation parameters

We describe here the case selected for the nonlinear studies. This is well
documented in Ref. [67]. The tokamak magnetic equilibrium is defined by
a major and minor radii of R0 = 1 m and a = 0.3125 m, a magnetic field
on axis of B0 = 1.9 T, a flat safety factor radial profile, with q = 2, and
circular flux surfaces (with no Grad-Shafranov shift). Flat temperature
and density profiles are considered at the equilibrium for all species. The
bulk plasma temperature is defined by ρ∗ = ρs/a, with ρs = cs/Ωi, with
cs =

√
Te/mi being the sound speed. Three increasing values of bulk

plasma temperature are considered, for investigating the dependence of
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our results on the Landau damping, corresponding to: ρ∗1 = 1/256 =
0.0039, ρ∗2 = 1/128 = 0.0078, and ρ∗3 = 1/64 = 0.0156 (τe = Te/Ti = 1
for all cases described in this dissertation).

All parameters defined so far, are adopted by ORB5 with no con-
sideration of the mass of the bulk ion species. The choice of the bulk
ion mass is done only during the post-processing of the results of ORB5,
if we need to know the values of equilibrium or perturbed quantities in
non-normalized units. In particular, in the case of a hydrogen plasma, we
get a value of the ion cyclotron frequency of Ωi = 1.82 · 108rad/s. With
this choice of bulk specie, we can calculate the plasma temperature and
sound frequency. The three values of plasma temperature are Ti1 = 515
eV, Ti2 = 2060 eV, and Ti3 = 8240 eV. The sound frequency is defined as
ωs = 21/2vti/R (with vti =

√
Ti/mi, which for τe = 1 reads vti = cs). We

obtain the following three values of the sound velocity: cs1 = 2.22 · 105
m/s, cs2 = 4.44 · 105 m/s, cs1 = 8.88 · 105 m/s. These correspond to
the following three values of the sound frequency: ωs1 = 3.14 · 105 rad/s,
ωs2 = 6.28 · 105 rad/s, and ωs3 = 1.25 · 106 rad/s.

The energetic particle distribution function is a double bump-on-tail,
with two bumps at v‖ = ±vbump (see Fig. 3.4), like in Ref. [90]. In
this dissertation, vbump = 4 vti is chosen. In order to initialize a dis-
tribution function which is function of constants of motion only, the
modified variable ṽ‖ =

√
2(E − µBmax)/m/vti is used instead of v‖ =√

2(E − µB(r, θ))/m/vti (similarly to Ref. [63, 90, 64]). Neumann and
Dirichlet boundary conditions are imposed to the scalar potential, re-
spectively at the inner and outer boundaries, s = 0 and s = 1.
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3.3.2 Linear dynamics

The linear dynamics of EGAMs in an equilibrium similar to the one con-
sidered in Sec. 3.3.1, has been investigated in Ref. [64] for a bulk plasma
temperature given by ρ∗ = 1/64 = 0.0156, by means of ORB5 simulations
and analytical theory. Here, we show a scan on the EP concentration,
similar to what was done in Ref. [64], but with three different values of
bulk plasma temperature, corresponding to three different values of ρ∗,
as described in Sec. 3.3.1. The linear dynamics of this case, shown here,
is described in detail in Ref. [67], and is needed as a basis for studying
the nonlinear evolution (which is treated in Chapter 4). The dependence
of the linear dynamics (frequency and growth rate) on the EP concen-
tration is shown in Fig. 3.5. Both the frequency and the growth rates
are observed to follow the qualitative scalings as described in Ref. [90]
and [64]. Note, in particular, that the growth rate does not grow linearly
with nEP .

The dependence of the frequency on the EP concentration is not ob-
served to change with ρ∗. Regarding the growth rate, no change is ob-
served when going from ρ∗3 = 0.0039 to ρ∗2 = 0.0078, meaning that the
measured growth rate is basically given by the value of the drive, and the
Landau damping here is negligible for the chosen values of EP concentra-
tion. On the other hand, when further increasing the temperature, and
going to ρ∗1 = 0.0156, a smaller value of growth rate is measured, meaning
a higher Landau damping. The transit resonance velocity of the EP can
be calculated by knowing the EGAM frequency of a specific simulation.
Considering a case with nEP/ni = 0.12 as an example, the frequency is
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Figure 3.5: Frequency (left) and growth rate (right) vs EP concentration,
for simulations with ζ̄ = vbump/vth=4, q=2 [67].
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measured as: ωL = 1.2ωs. For comparison, the GAM frequency for these
parameters is ωGAM = 1.8ωs. Then, the transit resonance velocity in
the linear phase is calculated as v‖0 = qRωL = 3.4 vti, with ωL being the
EGAM linear frequency.

3.4 Linear dynamics in experimental con-

figurations

3.4.1 The reference case of ASDEX Upgrade

The AUG shot #31213 at time 0.84 s has been selected within the
Non-Linear Energetic-particle Dynamics (NLED) Eurofusion enabling
research project [98, 51]. It has been chosen to study the effect of the
energetic particles (EPs) on the dynamics of EGAMs and Alfvén modes.
In these simulations we have three species: gyro-kinetic thermal deu-
terium, gyro-kinetic energetic (fast) deuterium, and thermal electrons,
either adiabatic (AE) or drift-kinetic (KE). The simulation with the AE

Figure 3.6: Magnetic configuration (upper left plot), radial profile of the
safety factor (upper right plot), species temperature (lower left plot) and
density (lower right plot) radial profiles for the EGAM simulations in the
NLED-AUG base case (ASDEX Upgrade shot #31213). The grey vertical
dotted lines indicate the right boundary of the simulated radial domain in
the EM case with drift-kinetic electrons [92].
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is performed in the electrostatic limit, while the simulation with the KE
has been done including dynamics of the magnetic potential perturbation
as well. In this latter case the pullback method [99] has been used for the
mitigation of the cancellation problem in EM simulations [100, 101]. Cor-
responding profiles of the safety factor, species density and temperature
are shown in Fig. 3.6. The magnetic field is reconstructed with experi-
mental data, including all geometrical effects (Fig. 3.6). The magnetic
field at the magnetic axis is B0 = 2.2 T. The major radius at the axis
is R0 = 1.67 m. The geometrical major and minor radii are R0 = 1.62
m, a = 0.482 m respectively. The magnetic equilibrium shape and the
plasma profiles are shown in Fig. 3.6.

3.4.2 The effect of the flux surface elongation

As described in the previous sections, the dynamics of EGAMs is strongly
determined by the drive given by the inverse Landau damping. There-
fore, it is clear that a modification of the particle trajectories (given for
example by a non-circular tokamak geometry) can yield a modification
in the resonances, and therefore in the linear frequency and growth rates.
In this section, our goal is to give a numerical estimation of the frequency
and growth rate of EGAMs in the NLED-AUG case.

Before considering the experimental magnetic equilibrium of ASDEX
Upgrade described in the previous section, we want to investigate here
the effect of the elongation of the magnetic flux surfaces on the EGAM
frequency and growth rate, by selecting a set of magnetic equilibria with
different elongation. Simulations with adiabatic electrons are considered
here. The results shown in this section are published by A. Di Siena in
Ref. [49]. We consider the same physical parameters as in Sec. 3.2 and the
value of ρ∗ is fixed to ρ∗ = ρs/a = 1/128. The q-profile is almost constant
at the value of q = 2 in the whole range of the radial profile which goes
from 0 < s < 1 and the elongation is varied from κ = 1 (circular flux
surfaces) to κ = 1.75. The fast ion concentration is nEP/ne = 0.23.

An excellent agreement is found with the codes GENE and ORB5.
As a result, the EGAM growth rate is found to strongly decrease with
the elongation (about a factor two for the considered range of values of
the elongation), whereas the frequency decreases but more weakly (about
10% in the considered range). The decrease of the EGAM growth rate
for elongated plasmas in weakly driven EGAMs is a direct consequence
of the increase of the Landau damping due to the thermal ions (see the
dedicated studies in Ref. [107, 108, 81]). This occurs because their transit
frequency decreases for elongated plasmas, which pushes the resonance
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towards the region of the distribution function with higher derivative in
velocity space. A detailed study of this effect can be found in Ref. [49].

We now proceed to investigate the experimental magnetic equilib-
rium of ASDEX Upgrade described in the previous section and shown
in Fig. 3.6. A first simplified setup with Ti = Te = 1.603 keV, corre-
sponding to ρ∗ = ρs/a = 1/183.3 and considering flat temperature and
density profiles is considered. These values have been taken from the
full main-ion radial temperature profile at s = 0.5. For the nominal fast
ion density nEP = 0.2ne at s = 0.5, both codes agree well on the the
values of the EGAM frequency and growth rate which are found to be
ω = 1.267 cs/R0 = 33.3 kHz and γ = 0.103 cs/R0 for the realistic AUG
equilibrium. Fig. 3.8 furthermore demonstrates a pronounced effect of
the magnetic geometry on the linear EGAM growth rates and frequen-
cies. The plasma elongation is confirmed to weaken the EGAM growth
rates and slightly reduce the mode frequency. A change in the EGAM
fast ion density threshold can be observed as well. Consistently with
the results shown above, the plasma elongation affects also the thermal
damping, which unlike of the fast ion drive, strengthens with the elonga-
tion and can became dominant for the cases of weak EGAM drive. The
combined effect of the elongation on the thermal damping and fast ion
drive is found to significantly affect the fast ion density threshold.

We now consider simulations with the experimental plasma profiles
described in Fig. 3.6. The corresponding EGAM growth rate and fre-
quency are determined to γ = 0.0465 cs/R0, ω = 2.013 cs/R0 = 44.69
kHz. Compared to values obtained for the case with flat profiles, the
EGAM growth rate for these realistic AUG based parameters appears

1 1.2 1.4 1.6 1.8
1.35

1.4

1.45

1.5
EGAM frequency

elongation

ω
 /
 [

c
s
 /
 R

0
]

 

 

GENE global
ORB5
GENE local

1 1.2 1.4 1.6 1.8
0.06

0.08

0.1

0.12

0.14

0.16
EGAM growth rate

elongation

γ 
/ 
[c

s
 /
 R

0
]

 

 

GENE global
ORB5
GENE local

Figure 3.7: Frequency (left) and growth rate (right) of EGAMs in de-
pendence on the elongation, for a test case with nEP/ne = 0.23, ρ∗ =
1/128 [49].
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to be relatively small. In the analysis discussed here, the NBI fast Deu-
terium temperature has been fixed to a realistic value of TEP = 30 keV,
which is calculated from the NBI injected energy while thermal NBI Deu-
terium had been considered in the simplified setup in the previous section.
The aforementioned increase in the fast ion temperature produces a net
reduction of the energy exchange term between fast ions and the mode
with a consequent reduction of the EGAM growth rate. Furthermore,
we also observe a significant increase in the EGAM mode frequency. It
is also possible to compare the experimentally measured frequency of
the n = 0 modes at t = 0.841 s and s = 0.5 with the values obtained
by GENE with realistic density and temperature profiles. Despite the
simplified setup here considered - adiabatic electrons, no nonlinear cou-

Figure 3.9: Experimental spectrum of EGAMs in ASDEX Upgrade and
theoretical prediction (white cross) [49].
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pling and electrostatic simulations - Fig. 3.9 displays a surprisingly good
agreement between the measurement of the EGAM frequency in the first
linear phase and the simulation value.

3.4.3 The effect of kinetic electrons

In this section, we show results obtained with ORB5 with simulations
with adiabatic electrons (AE) and kinetic electrons (KE). The results
shown in this section are published by I. Novikau in Ref. [92]. The simu-
lations with the AE are performed with the electrostatic model, while the
simulations with the KE have been done using the electromagnetic ver-
sion of ORB5, i.e. including the dynamics of the magnetic potential per-
turbation. In this latter case the pullback method [99] has been used for
the mitigation of the cancellation problem in EM simulations [100, 101].

In the EM case the radial domain has been reduced to s = [0.0, 0.9]
to avoid numerical instabilities due to the abrupt increase of the safety
factor at the edge. The density profile, that is depicted in Fig. 3.6,
corresponds to the case with βe = 〈ne〉Te/(B

2
0/(2µ0)) = 2.7 · 10−4, where

〈ne〉 is the electron density, averaged in a tokamak volume, µ0 is the
magnetic constant, and Te is measured at the radial position s = 0.0.
In both cases, the velocity distribution of the fast particles is described
by the double bump-on-tail with uH,f = 8 and TH,f = 1. The ORB5
simulation with such parameters of the fast species results in one of the
biggest EGAM growth rate for the given plasma configuration.

The Mode-Particle-Resonance (MPR) diagnostic [92], recently imple-
mented in ORB5, provides the energy transfer signal P(v‖, µ, t) of the
various species “sp” as a function of the velocity variables (v‖, µ) and
time, contributing to the total growth rate γ:

γ =
∑

sp

γsp = −1

2
Re

[〈P
E

〉

t

]
, (3.2)

P =
∑

sp

Psp =
∑

sp

∫
Jsp ·E dV (3.3)

Here E is the instantaneous mode energy, Jsp is the current carried by
a species, and E is the radial perturbed electric field. By averaging this
signal on several GAM/EGAM periods, resonances of the mode-particle
interaction can be localised in the velocity space. Their location can be
compared with the analytically given parallel resonance velocity:

v‖,res = qR0ωGAM , (3.4)
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Figure 3.10: The energy transfer signal of EGAMs in the NLED-AUG
case with the thermal ions (up), electrons (middle), and EP (bottom).
The white dashed lines indicate the analytical estimation of the main
EGAM-plasma resonance (Eq. 3.4). The dash-dot lines indicate posi-
tion of the second resonance v‖,res/2. The white cones indicate analytical
estimation of the passing-trapped species boundaries [92].

where ωGAM is the GAM frequency, that can be found directly from the
radial zonal electric field Er.

When applying the MPR diagnostic to simulations of EGAMs in the
NLED-AUG case with AE (like those described in the previous section),
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the total measured growth rate is:

γAE[
√
2vth,i/R0] = 1.62 · 10−1 ± 1.5 · 10−3 (3.5)

consistent with the value measured by analysing the growth of the electric
field in time.

We now repeat these simulations with KE. The first result to note is
that the total growth rate, measured in the evolution of the radial electric
field, is lower than in the case with AE. The reduction of the growth rate
is not negligible, and for this simulation is estimated to about a factor 2:

γKE[
√
2vth,i/R0] = 8.4 · 10−2 ± 9.3 · 10−3 (3.6)

We now apply the MPR diagnostic to understand which wave-particle
interactions lead to the decrease of the EGAM total growth rate, by
estimation of the contribution of different species. In the simulation
with adiabatic electrons, the electrons do not contribute to the wave-
particle resonances, so the contribution to the mode growth is given by
the thermal ions and by the fast ions, in the following measure:

ions : γAE,i[
√
2vth,i/R0] = −2.99 · 10−1 ± 2.3 · 10−3, (3.7)

EP : γAE,f [
√
2vth,i/R0] = 4.62 · 10−1 ± 1.3 · 10−3. (3.8)

In case with drift-kinetic electrons, the species contributions are the
following:

ions : γKE,i[
√
2vth,i/R0] = −3.8 · 10−1 ± 3.2 · 10−2, (3.9)

electrons : γKE,e[
√
2vth,i/R0] = −3.0 · 10−2 ± 9.6 · 10−4, (3.10)

EP : γKE,f [
√
2vth,i/R0] = 4.6 · 10−1 ± 4.1 · 10−2. (3.11)

Figure 3.11: Radial structure of EGAMs in the NLED-AUG case, ob-
tained with ORB5 simulations with kinetic electrons [92].
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It is clearly shown here that in the experimentally relevant plasma con-
ditions the inclusion of the drift-kinetic electrons significantly decreases
the EGAM growth rate of about a factor 2. The reason is twofold: firstly,
a non negligible electron Landau damping contributes to the total damp-
ing of the mode, and secondly, due to the slight modification of the mode
structure and frequency, also the contribution of the two other species
(thermal ions and EP) is slightly modified. For more details on the na-
ture of these resonances and a discussion on the possible application of
the MPR diagnostic, the reader should refer to Ref. [92].

The radial structure of the EGAM in the NLED-AUG case can also be
studied with these linear simulations. The result for ORB5 simulations
with kinetic electrons is shown in Fig. 3.11. The EGAM is shown to be
radially peaked around s ≃ 0.3 and s ≃ 0.4. GENE also gives consistent
results. For comparison, note that the mode observed in simulations
with adiabatic electrons is found to be radially peaked at a larger radii
(s ≃ 0.5).
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Chapter 4

Nonlinear dynamics

4.1 The wave-particle nonlinearity

In this chapter, we describe the nonlinear evolution of EGAMs, and in
particular the saturation level and the EP redistribution in phase space.
By saturation level, we mean here the maximum level reached by the field
right at the end of the linear phase, and before the amplitude starts de-
creasing. In the past, the nonlinear dynamics of EGAMs has been studied
in various theoretical works (see for example Refs. [44, 63, 45, 47, 48]). As
mentioned in Sec. 2.5, two possible types of nonlinear saturation are pos-
sible: wave-particle nonlinearity and wave-wave nonlinearity. The wave-
particle nonlinearity is due to the redistribution of the EPs in phase space,
and the wave-wave nonlinearity is due to the coupling of the EGAM field
with other modes or with itself. In this dissertation, we focus on the
wave-particle nonlinearity, and show how this saturation mechanism can
be explained in terms of the inverse Landau damping, in comparison with
the beam plasma instability (BPI).

The wave-particle nonlinear saturation has been studied with ORB5
with two main diagnostics: the measurement of the scaling of the satura-
tion level with the linear drive, and the measurment of the redistribution
of the EP population in phase space. For both, a key comparison is built
with the nonlinear wave-particle saturation of the BPI. The scaling of
the saturation level defines the regime of wave-particle interaction, and
allows to build a predicting formula based on an analytical derivation.
The study of the EP redistribution in phase space allows to investigate
the effect of the EGAM field in modifying the EP distribution function
around the resonance velocity.

The results presented in this chapter are described more in detail in
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Ref. [67] and [103].

4.2 Nonlinear saturation level

4.2.1 Scaling of the saturated amplitudes

In this Section, we focus on the value of the saturated electric field ¯δEr,
and we investigate its dependence on the value of the linear growth rate
and of the damping. The corresponding scaling of ¯δEr sheds light on
the mechanism which is responsible for the saturation. A one-to-one
comparison with the saturation mechanism of the BPI is also described.

The amplitude of the EGAM at saturation has been measured in dif-
ferent simulations performed with ORB5. The wave-particle nonlinearity
only has been considered, by pushing on perturbed trajectories the EP
population only. Therefore, even if the linear resonance velocity falls near
the tail of the bulk ions (see Fig. 3.4), no nonlinear interaction of those
bulk ions with the EGAM is considered in our model. More in general,
the nonlinear interaction of the bulk ions with the EGAM is expected
to be important: this has been studied in part analytically in Ref. [65],
and its study with ORB5 is in progress. Different values of the bulk
temperature, and the EP concentration, have been considered. As an
example, the radial structure of a nonlinear simulation with ρ∗ = 0.0156,
nEP/ni = 0.176 is depicted in Fig. 4.1-a. No sensible change in the radial
wave-number is observed when going from the linear phase, to the sat-
uration, and after the saturation. This confirms that in this particular
configuration, where all equilibrium radial profiles are flat, EGAM can
be treated as a 1-dimensional problem where the radial direction does
not play an important role.

When varying only the bulk temperature, both the linear frequency
and growth rate are observed to scale with the sound frequency, which
is a good normalization frequency (consistently with Fig. 3.5). The sat-
uration level increases with the linear growth rate, similarly to other
instabilities like the BPI in a uniform system and the Alfvén instabilities
in tokamaks. This is depicted in Fig. 4.1-b, where non-normalized units
are used (in particular, the ion cyclotron frequency is selected as a time
unit not depending on the temperature).

The scalings with the energetic particle concentration are also inves-
tigated. The results are shown in Fig. 4.2a. We obtain that, in the
considered regime, the saturated level scales as the quadratic power of
the linear growth rate. This quadratic scaling is typical for marginally
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Figure 4.1: On the left, EGAM normalized radial structure for ρ∗ =
0.0156, nEP/ni = 0.176 during the linear phase (red, continuous), at
saturation (blue, dashed), and after saturation (green, dash-dot). On the
right, absolute value of the electric field measured at the position of the
peak, s = 0.6, for three different simulations with respectively ρ∗ = 0.0039
(blue), ρ∗ = 0.0078 (red), ρ∗ = 0.0156 (green). All simulations here have
nEP/ni = 0.30. The time is expressed in units of Ω−1

i .

stable bump-on-tail instabilities, as derived by O’Neil [60, 61].
We can consider the problem to be similar to a monochromatic beam-

plasma instability, in which particles are moving in the potential well of
the perturbed electric field. Depending on the energy, some particles are
trapped inside the well and execute bounce motion with frequency ωb

in the frame moving with the wave phase velocity. The resonant par-
ticles exchange energy with the mode, causing the amplitude to grow
and the particles to redistribute in phase space, flattening the velocity
distribution in the vicinity of the resonant parallel velocity v‖ = ωqR0.
The drive is due to the positive slope of the particle distribution in the
velocity space at the resonant parallel velocity, which acts as an inverse
Landau damping. In the initial stage ωb ≪ γL, the mode grows ex-
ponentially with a linear growth rate, making more and more particles
to become trapped in the phase space. After some significant particle
velocity redistribution, the power exchange between the wave and the
particles is balanced, causing the wave amplitude to saturate.

Since the initial perturbation is negligible, the saturation level is de-
termined by the exchange of energy between the mode and a band of
resonant particles [66]. The chirping of the mode seen in Fig. 4.3 is a
strongly non-linear effect that occurs when the amplitude is large enough
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to have the trapped (and more generally resonant) particles with ωb ∼ γL
drastically change the dynamics of the mode through the modification
of the distribution function and non-perturbative fast particle response.
Namely, the mode dynamics is determined by all resonant particles that
exhibit a continuous oscillation, trapping and detrapping in the poten-
tial well of the mode, thus contributing (non-perturbatively) to the non-
adiabatic behavior observed in the simulation.

The quadratic scaling of the saturation level with the damping ob-
tained with our simulations is similar to the saturation of the BPI, where
it occurs due to wave-particle trapping [60]. For the BPI, the original
reference of M. B. Levin (1972) gives a value of ωb = 3.06 γL at satura-
tion [66] (for comparison, note that more recent numerical calculations
find ωb = 3.2 γL [102, 69]). For EGAMs, the bounce frequency (we use
the units of the I.S. in this derivation) is given by [43]:

ω2
b = α1

¯δEr , with α1 ≡
eV̂dc

2mEP v‖0qR0

(4.1)

withmEP being the mass of the energetic particle specie, considered equal
to the bulk ion mass in this dissertation, v‖0 the velocity matching the

resonance condition, and V̂dc = mEPv
2
‖0/(eBR) the magnetic curvature

drift. Therefore we have:

α1 =
v‖0

2qR2B
=

ωL

2RB
(4.2)

We emphasize that the value of α1 depends on ωL. This is a main differ-
ence with respect to the BPI, where there is only one value ωlin = ωpe in
the model, with ωpe being the plasma frequency.

The dependence of the maximum electric field on the linear growth
rate can be measured with the results of the numerical simulations. For
the simulations shown in Fig. 4.2, we find:

¯δEr = α2γ
2
L = α̃2γ̃

2
L (4.3)

where γ̃L is the linear growth rate normalized to the sound frequency
ωs, which is absorbed into the coefficient α̃2. The values of α2 are found
to depend on the bulk temperature. For the three chosen increasing
values of ρ∗, i.e. ρ∗ = 0.0039, 0.0078 and 0.0156, we have respectively
α̃2 = 0.47 · 107 V/m, 0.9 · 107 V/m, and 2.0 · 107 V/m. Finally the
relationship between the EP bounce frequency and the linear growth
rate is obtained:

ωb = β γL (4.4)
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Figure 4.2: On the left, maximum value of the EGAM radial electric
field, vs linear growth rate, for the same simulations as in Fig. 3.5. The
red, blue and green crosses refer respectively to ρ∗ = 0.0039, ρ∗ = 0.0078,
ρ∗ = 0.0156. The dashed lines are the quadratic fitting formulas. On the
right, the value of β as given in Eq. 4.5, vs the linear frequency, for the
same simulations. The black dashed line is the sqruare root interpolation.
For a reference, the black star shows the result obtained for the BPI in
Ref. [66].

where β is calculated as β = (α1α2)
1/2 = (α1α̃2)

1/2/ωs, which yields:

β = β0

( ωL

ωGAM

)1/2

, with β0 =
1

ωs

(ωGAM α̃2

2RB

)1/2

(4.5)

Note that here, β depends on the EGAM frequency, which changes
with the intensity of the drive, given here by the EP concentration (see
Fig. 3.5). As a comparison, note that in the problem of the BPI, solved
in Ref. [60, 61, 66], on the other hand, the mode frequency is assumed
to be constant and equal to the frequency measured in the absence of
EP. On the other hand, the values of β are found not to depend on the
damping, which changes with the three different bulk temperatures: an
interpolation can be drawn for all considered simulations, and shown to
depend on ωL only (see Fig. 4.2b). In this sense, the formula given in
Eq. 4.5 is universal for the chosen regime, because it does not depend on
the bulk plasma temperature.

The considered equilibrium has been chosen in order to excite EGAMs
out of a GAM, and not out of a Landau pole, as described in Ref. [64].
This choice of the mode is done, in order to have a one-to-one correspon-
dence with the BPI, where the mode which is excited by the energetic
electron beam is the Langmuir wave which is an eigenmode of the system
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in the absence of EP. Following this consideration, we can consider the
interpolation of the results shown in Fig. 4.2, and take the extrapola-
tion to ωL → ωGAM , which is the limit assumed in the resolution of the
BPI. In this case, the extrapolation gives a unique value, which defines
the EGAM instability, i.e. β0 = β(ωL/ωGAM = 1) = 2.66. This is to
be compared with the value of β obtained for the BPI [66, 102, 69], i.e.
βBPI = 3.2 (originally estimated as βBPI = 3.06 by Levin).

Finally, by using Eqs. 4.1, 4.2, 4.4 and 4.5, we can write the formula
for the saturated electric field as a function of the linear characteristics
of the mode:

δEr =
2RBβ2

0

ωGAM
γ2
L (4.6)

with the value of β0 = 2.66 in the regime considered in this dissertation.

4.2.2 Frequency

In this section, we show the results of the measurement of the time evo-
lution of the EGAM frequency. In Sec. 4.2.1, we have shown that a
quadratic scaling of the saturated electric field on the linear growth rate
is found. This quadratic scaling, has a one-to-one correspondence on
the Langmuir wave problem investigated by O’Neil, where the satura-
tion occurs due to wave-particle trapping. The wave-particle trapping
mechanism, is usually referred to as adiabatic, meaning that a slowly
increasing potential well traps more and more energetic particles. In this
adiabatic regime, the mode frequency varies very slowly with respect to
the bounce frequency. On the other hand, in the EGAM case considered
here, we show that the saturation is not strictly adiabatic, but a tran-
sition between adiabatic and non-adiabatic regime occurs at the time of
the saturation.

In this section, we take again the EGAM case with ρ∗ = 0.0078,
nEP/ni = 0.12, as a typical case, and we investigate the variation of
the frequency in time in comparison with the bounce frequency. For
the measurement of the frequency, we use the radial zonal electric field
measured at s=0.5. The measurement of the frequency is performed
in two different ways: a) as an average of the period between several
EGAM oscillation peaks, as shown in Fig. 4.3-a; b) with a short-time
Fourier transform (STFT), as shown in Fig. 4.3-b.

With the first technique, namely measuring the frequency by inver-
sion of the period between neighbouring peaks, an upward chirping is
observed in the nonlinear phase, of the order of 10% of the linear fre-
quency. This means that the resonance condition changes in time, with
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time average of the period between the peaks (left, “a”) or with a short-
time Fourier transform (right, “b”), for ρ∗ = 0.0078, nEP/ni = 0.12.

resonance velocity slightly increasing at the time of the saturation or
in the later phase (see Fig. 4.3-a). A dominantly upward chirping of
EGAMs was previously observed and documented in Ref. [41, 44]. In the
cases of interest, the frequency changes with a similar time scale as the
evolution of the amplitude. In this regime, we refer to this change of the
frequency in time as nonlinear frequency shift, i.e. frequency chirping.

The second technique, consists in measuring the frequency with a
short-time Fourier transform (STFT) on a Hamming time-window. With
this technique, the error bar in frequency is large (due to the small num-
ber of oscillations in the nonlinear regime around the saturation), namely
of the order of 10-20% (see Fig. 4.3-b). With such a big error-bar, no
clear upward chirping is observed. Near the time of the saturation, i.e.
t ≃ 2.2Ω−1

i , only one mode is observed. This is the condition of applica-
tion of the direct technique of measurement of the frequency described
above, where the frequency can be measured as the inverse of the period
among peaks.

As mentioned above, the EP bounce frequency ωb depends on the
mode amplitude. For this case, the mode amplitude grows during a
linear phase, then enters the nonlinear phase and saturates at the time
t = 2.3 · 104Ω−1

i . The corresponding value of ω2
b for the considered

simulation is shown in Fig. 4.4-a. When the EGAM frequency evolves
slowly in time with respect to the inverse of the bounce frequency, then
the EP can bounce back and forth many times, and this is called adiabatic
dynamics. The adiabaticity parameter, defined as ω′/ω2

b , measures the
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ρ∗ = 0.0078, nEP/ni = 0.12.

level of adiabaticity of the dynamics. Here, ω′ is the time derivative
of the frequency. The time evolution of the adiabaticiy parameter for
the considered simulation is depicted in Fig. 4.4-b (with ω being the
instantaneous mode frequency). A transition from adiabatic to non-
adiabatic dynamics near the saturation is observed. In particular, near
the saturation, the EP do not have the time to perform many bounces
during the nonlinear modification of the wave. From this respect, the
EGAM dynamics and the BPI are not in analogy.

4.3 Nonlinear transport in phase space

4.3.1 Nonlinear EGAM evolution

In this Section, we describe the evolution in time of the nonlinear simu-
lations of EGAMs performed with ORB5. Here, like in the rest of this
dissertation, the wave-particle nonlinearity only is considered. As an
example, we consider a case with nEP/ni = 0.10. A zonal (i.e. axisym-
metric) radial electric field is initialized at t=0, with an amplitude of the
order of 103 V/m, and let evolve in time in a nonlinear simulation with
ORB5. The results of the analysis of this case in phase space (described
in this Sec. 4.3) are taken from Ref. [103]. An initial linear phase is ob-
served, where the radial electric field grows exponentially in time. In this
phase the linear frequency and growth rate are measured and checked to
match with the ones of the linear simulation: ωL = 1.24ωs, γL = 0.06ωs.
Then, a nonlinear phase is entered, the growth rate gradually decreases
to zero, and the radial electric field saturates at t ≃ 2.5 · 104Ω−1

i (see
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Figure 4.5: Radial electric field in time, at different radial positions (left),
and EP distribution function at different times, vs parallel velocity (right)
for an EGAM simulation with ORB5 with nEP/ni = 0.10.

Fig. 4.5-a), when the electric field reaches a value of δEr ≃ 3.5 · 104
V/m. This value of the saturated electric field can be compared with the
prediction derived in the previous Chapter (see also Ref. [67]):

δEr,th =
2RBβ2

0

ωGAM
γ2
L = 3.5 · 104V

m
(4.7)

where the constant β0 = 2.66 is estimated in Ref. [67] for this regime.
For the present equilibrium plasma profiles, the regime is defined by the
value of q = 2, for which we have an EGAM which comes from a GAM
(see also Sec. 3.3.1). We emphasize here that the quadratic scaling of
the electric field with the linear growth rate shown in Eq. 4.7 has been
found to be valid for the whole considered range of EP concentrations
(the same range used in Fig. 3.5). After the saturation, the EGAM enters
a deep nonlinear phase (t > 2.5 · 104Ω−1

i ), when the electric field starts
decreasing in amplitude. In this dissertation we are interested in the first
nonlinear phase only, up to the saturation, and we leave the study of the
deep nonlinear phase to another dedicated article. In particular, we focus
here on the nonlinear modification of the EP distribution function at the
time of the saturation, and on the corresponding nonlinear modification
of the EGAM frequency.

The EP distribution function redistributes in v‖ during the first non-
linear phase, causing a relaxation of the drive due to the inverse Landau
damping. The EP distribution function of this simulation is shown in
Fig. 4.5-b). The redistribution of the EPs is observed to occur in a range
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Figure 4.6: Radial electric field in time, at different radial positions (left),
and EP distribution function at different times, vs parallel velocity (right)
for an EGAM simulation with ORB5 with nEP/ni = 0.176.

of velocities between 2.5 vti and 4.5 vti. The EP distribution function
does not change during the linear phase, and when entering the non-
linear phase, the redistribution occurs with higher-velocity EP moving
towards lower values of v‖, as time increases. Therefore, negative values
of the perturbed distribution function are measured at high velocities,
and positive at low velocities. The resonance velocity can be calculated
as v‖res = qRωEGAM = 3.5 vti, and can be measured in Fig. 4.5-b as the
velocity where the perturbed distribution function changes sign. We note
that this velocity measured in Fig. 4.5-b, for this value of nEP/ni = 0.10,
does not sensibly change in the time range of interest.

Before moving further, we want to consider another case for compar-
ison, with a stronger drive, namely with nEP/ni = 0.176. The evolution
in time of the radial electric field is shown in Fig. 4.6-a. The linear fre-
quency and growth rate is measured and checked to match with the ones
of the linear simulation: ωL = 1.14ωs, γL = 0.094ωs. The saturated
level of the radial electric field is measured at δEr ≃ 0.8 · 105 V/m (in
agreement with the prediction of Ref. [67]).

The EP distribution function of the case with nEP/ni = 0.176 is
shown in Fig. 4.6-b, for different times up to the saturation. Firstly, we
note that the range of velocities affected by the nonlinear modification
is broader than that for the weaker drive. In fact, the redistribution of
the EPs is observed to occur in a range of velocities between 2 vti and
5 vti. Secondly, we note that the resonance frequency, which is calculated
in this case from the linear frequency as v‖res = qRωEGAM = 3.2 vti,
does not perfectly describe the velocity of the change of sign of the per-
turbed distribution function at all times. In fact, the resonance velocity
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i . On the right, frequencies
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perturbed distribution function. The measured EGAM freq. is also shown
in green.

is observed to grow in time, from 3.2 vti to 3.5 vti.
The evolution of the resonance velocity in time is in relation with

the EGAM nonlinear frequency modification, i.e. the EGAM chirping.
The perturbed EP distribution function can be plotted explicitly (see
Fig. 4.7-a). The positive peak (clump) and the negative peak (hole) can
be seen to form and evolve in time, becoming bigger and centered at
higher and higher distances from the linear resonance velocity. The loca-
tion in velocity space of the peaks can be measured and translated into
resonance frequencies as ω1,2 = v‖1,2/qR (see Fig. 4.7-b). When com-
pared with the measured EGAM frequency, we note that the nonlinear
EGAM frequency modification at the time of the saturation is described
with a good approximation by the resonance frequency of the negative
peak (hole). This relation offers the possibility to predict the nonlinear
frequency by approximating it with the frequency obtained by the veloc-
ity of the negative peak of the EP perturbed distribution function (see
also Ref. [44]).

In the next section, Sec. 4.3.2, we introduce the beam-plasma instabil-
ity (BPI) and the map linking the BPI with the EGAM. This map shows
how we can predict the EGAM EP redistribution in velocity space.
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4.3.2 Dynamics of the energetic particles: analogy
with the beam-plasma instability

In general, the Langmuir wave can be decomposed in Fourier in terms
of the wavenumbers kℓ = ℓ(2π/L), where L is the periodicity length of
the 1D space domain of the BPI, and ℓ is a positive integer (whereas
the EGAM has only one possible wavenumber set by the equilibrium,
as mentioned above). One can have two different regimes: (i) the one
where several resonances are present in the unstable region of the phase
space for which saturation is generally well described in the framework of
the quasi-linear theory, and (ii) the one where there is a single mode in
the unstable region, in which case saturation is due to particle trapping
(wave-particle interaction). For the comparison described here, we refer
to to situation (ii). Considering a single monochromatic wave with a
chosen value of ℓ, we can focus on that, and we denote the wavenumber
as k. The phase-angle Θ experienced by the electrons in the field of the
Langmuir wave is thus Θ = kx − ωpt and the normalized variation in
time of the phase angle is Θ̇/ωp = k(v − vr)/ωp = kv/ωp − 1, where the
resonant velocity is defined as vr = ωp/k. As a choice of nomenclature,
we refer in this subsection to the velocities of the EGAM as v‖, and to
the velocities of the BPI as v. Similarly, we refer to the wavenumbers of
the EGAM as k‖ = 1/qR, and to the wavenumbers of the BPI as k.

In the following, we describe the detailed mapping procedure which
links the EGAM framework with the BPI. As already mentioned, the
dynamics of the EGAM model can be reduced in the parallel velocity
direction and we start from the generic resonance condition written using
two suitable normalization constants ν1,2, i.e.,

v‖ − v‖0
ν1

=
v − vr
ν2

, (4.8)

where we recall that the transit resonance velocity reads v‖res = qRωEGAM(nEP ).
Using the introduced above standard normalization ν1 = vti and, for the
calculation of this Section, v̄‖ = v‖/vti, in the following, we denote with
v̄‖min 6 v̄‖ 6 v̄‖max the domain of the positive bump of energetic parti-
cles. Imposing the boundary v̄‖min = 0 7→ vmin = 0, in order to map
one single bump of energetic particles with v̄‖ > 0, we get ν2 = vr/v̄‖r
and the map finally writes

v =
vr
v̄‖r

v̄‖ . (4.9)

Let us now introduce the following normalization: v = ωp(2π/L)
−1 u.

In order to fix the dimensionless resonant wavenumber ℓr, we use the
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condition k1vmax = ωp, with vmax = vrv̄‖max/v̄‖r, which characterize
the spectral features (wavenumbers and periodicity length). This yields
ℓr = ℓ1v̄‖max/v̄‖r, and ℓr is determined arbitrarily fixing ℓ1 since v̄‖max

and v̄‖r are given quantities from the EGAM system. We stress how the
resonance condition can be rewritten as ℓrur = 1.

The map between the velocities of the two systems is now closed. The
bump (positive part) of the EP is described by the shifted Maxwellian
distribution function FEP (v‖) in velocity space [67]. For modeling the EP
distribution function of the EGAM in the BPI, let us now discretize the
positive bump of FEP (v‖) in n delta-like beams, equispaced in velocity
space and located in v̄‖j (with j = 1, ..., n), and assign the numbers
of particles Nj for each beam distributed according to FEP . The initial
conditions on the distribution for BPI simulations are now given by Nj

particles located at

uj = v̄‖j/(ℓrv̄‖r) . (4.10)

For the sake of completeness, we mention that, for the simulation of the
BPI, we have set n = 600, ℓ1 = 400 and we have used N = 106 total
particles. The complete derivation of the BPI dynamical equation used
here, is described in [68, 69] (and refs. therein), and it can be specified
for one single resonance as:

x̄′
i = ui , u′

i = i ℓr φ̄r e
iℓr x̄i + c.c. , φ̄′

r = −iφ̄r +
iη

2ℓ2rN

N∑

i=1

e−iℓr x̄i ,

(4.11)
where the particle position along the x direction is labeled by xi, with i =
1, ... N (N being the total particle number) normalized as x̄i = xi(2π/L).
The Langmuir electrostatic scalar potential φ(x, t) is expressed in terms
of the Fourier component φr(k, t) and we have used: η = nB/np (for
the plasma density np assumed much greater than the beam one nB),
τ = tωp (the prime indicates derivative with respect to this variable),
φ̃r = (2π/L)2eφr/mω2

p, φ̄r = φ̃re
−iτ . Eqs. 4.11 are solved using a Runge-

Kutta (fourth order) algorithm. For the considered time scales and for
an integration step h = 0.1, both the total energy and momentum (for
the explicit expressions, see [68]) are conserved with relative fluctuations
of about 1.4× 10−5.

The BPI is closed once the density of the beam (drive) is fixed. In
order to quantitatively compare the non-linear features of two systems,
we now fix the bounce (trapping) frequency ωB normalized to the mode
frequency equal for the two schemes. For the BPI, the bounce frequency
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results proportional to the linear growth rate of the mode γL,BPI. The
same occurs for the EGAM system, but with a proportionality factor
depending on the EP density [67]. In particular, we get:

ωB,BPI

ωp

= α
γL,BPI

ωp

,
ωB,EGAM

ωL,EGAM

= β(n̄EP )
γL,EGAM

ωL,EGAM

. (4.12)

where α ≃ 3.3 (see well-known literature results [21, 104] and also [70])
while for the EGAM we have β = β0

√
ωL,EGAM/ωGAM , with β0 = 2.66

in this regime (see Sec. 3.3.1), and ωL,EGAM depending on the EP den-
sity [67]. For the four selected EGAM simulations, we get β(0.07, 0.10, 0.176, 0.30) ≃
[2.21, 2.17, 2.07, 1.98]. Using standard normalization for frequencies,
i.e., γ̄L,BPI = γL,BPI/ωp and γ̄L,EGAM = γL,EGAM/ωGAM , ω̄L,EGAM =
ωL,EGAM/ωGAM and equaling the bounce frequencies, we finally get

γ̄L,BPI =
β

α

γ̄L,EGAM

ω̄L,EGAM
. (4.13)

This condition preserves the linear and nonlinear features of the two
systems and it is used in the evaluation for the drive of BPI simulations
from the linear dispersion relation which formally reads as

ǫ = 1−
ω2
p

ω2
=

ηω2
p

k2

∫ +∞

−∞

dv
k ∂vF̂B(v)

kv − ω
. (4.14)

where F̂B(v) is the initial beam distribution function. Here, the dielectric
function ǫ can be expanded near ω ≃ ωp to deal with Langmuir modes
as in Eqs. 4.11, i.e., ǫ ≃ 2(ω̄ − 1) (where ω̄ = ω/ωp). Let us now use the
expansion ω̄ = ω̄0 + iγ̄L,BPI, where ω̄0 is the real part of the normalized
Langmuir frequency ω̄. Using the linear character of the mapping which
yields the normalization F̂B(v) = κFEP (v̄‖) (with κ = const.), Eq. 4.14
can be written in terms of the EGAM system variables as

2(ω̄0 + iγ̄L,BPI − 1)− ηv̄‖r
M

∫ +∞

−∞

dv̄‖
∂v̄‖FEP

v̄‖/v̄‖r − ω̄0 − iγ̄L,BPI

= 0 , (4.15)

where M =
∫ +∞

−∞
dv̄‖FEP . This equation is numerically integrated assum-

ing Eq. 4.13, which guarantees the requested features described above,
and provides the drive parameter η closing the map procedure.

4.3.3 Nonlinear transport in phase space, and com-
parison with the beam-plasma instability

In this section, we compare the results of the EP redistribution due to
the EGAM, with the redistribution due to the beam-plasma instability.
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Figure 4.8: Energetic particle distribution function averaged in space,
and measured at µ ≃ 0, vs parallel velocity, for nEP/ni = 0.07 (left)
and nEP/ni = 0.10 (right). The vertical dashed and continuous lines are
the resonance velocity (center), with the borders of the nonlinear velocity
predicted by v‖res ±∆v‖NL.

In particular, we aim at predicting, from BPI informations, the nonlinear
parallel velocity spread in the positive bump of the distribution function.
The results shown here are discussed more in detail in Ref. [103].

In the BPI, the single mode dynamics proceeds in an initial exponen-
tial mode growth followed by non-linear saturation. Here the particles
get trapped and begin to bounce back and forth in the potential well
generating clumps. A measure of the clumps width ∆uc
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Figure 4.9: Same as in Fig. 4.8 but for nEP/ni = 0.176 (left) and
nEP/ni = 0.30 (right).
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initial half-Gaussian velocity distribution, which can be directly extrap-
olated to the analysis of the present work, has been evaluated in [70] for
several cases outlining the following scaling rule as function of the linear
drive:

∆uc
NL/ur = (6.64± 0.12) γ̄L. (4.16)

In order to include the dynamic role also of passing but nearly resonant
particles, i.e. the region involved in the effective wave particle power
exchange, in the following analysis we consider as the proper nonlinear
particle velocity spread the scaled quantity ∆uNL ≃ χ∆uc

NL with χ ≃
1.28. This estimate is derived [70] characterizing the active overlap of
different non-linear fluctuations [105, 106] and corresponds to the finite
distortion of the distribution function, including effects at the edges of
the plateau (defined as the flattened region of the distribution function,
mainly coinciding with the clump size). We finally obtain the desired
formula for the prediction of the nonlinear velocity spread due to the
EGAM:

∆v‖NL

v‖L,res
= 8.5 γ̄BPI

L (4.17)

and by substituting the value of γ̄BPI
L we obtain:

∆v‖NL

v‖L,res
= 2.57

β0√
ωGAM

γEGAM
L√
ωL,EGAM

(4.18)

Eq. 4.18 has been derived for the EGAM system, using the scaling derived
in Eq. 4.13 and the normalized mapping of Eq. 4.10. For the regime of
interest in this article, we have β0 = 2.66 [67], and ωGAM = 1.8ωs,
therefore we obtain:

∆v‖NL

v‖L,res
=

5.1√
ωs

γEGAM
L√
ωL,EGAM

(4.19)

Let us now analyze the predictivity of Eq. 4.18, simplified as in
Eq. 4.19 for the regime of interest. Four different simulations are consid-
ered, with different values of energetic particle concentration: nEP/ni ∈
[0.07, 0.10, 0.176, 0.30]. The corresponding linear frequencies and growth
rates are ωL,EGAM = [1.30, 1.24, 1.14, 1.04]ωs and γL,EGAM = [0.04, 0.06, 0.09, 0.11]ωs.
In all simulations, the distribution function is averaged in space, and mea-
sured at µ ≃ 0. Snapshots of the distribution function at different times
are selected, going from the linear phase to the instant when the first
peak of the electric field is reached, i.e. at saturation. In Fig. 4.8 and
Fig. 4.9, the distribution functions measured with ORB5 are shown to
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Figure 4.10: Plot of the BPI distribution function taken at saturation
time (dashed-black line) mapped back in the v‖ space, over the evolution
of the EP profile (color lines in standard color scheme from blue (t=2000
Ω−1

i ) to red (t=20000 Ω−1
i )) for nH/ni = 0.17 (left) and nH/ni = 0.3

(right).

be modified by the nonlinear interaction with the EGAM, with a certain
width in the velocity space. The position of the linear resonance veloc-
ity and the nonlinearly modified resonance velocity are shown for each
simulation respectively as a dashed vertical black line, and a continu-
ous vertical black line. We can now compare with the predicted values
of Eq. 4.19: ∆v‖NL/v‖L,res = [0.17, 0.28, 0.45, 0.55]. The corresponding
predicted range is delimited by vertical red lines in Fig. 4.8 and Fig. 4.9.
The dashed lines correspond to the range calculated with respect to the
linear resonance velocity, and the continuous lines with respect to the
nonlinearly modified resonance velocity. Note that the predicted width
of the velocity domain of EP redistribution, centered at the nonlinearly
modified resonance velocity, fits very well with the results of ORB5. Note
also that, for the two cases with lowest drive, the nonlinear modification
of the resonance velocity is negligible, and therefore the predicted width
of the velocity domain of EP redistribution fits very well the results of
ORB5, even when centered at the linear resonance velocity.

In summary, two distinct regimes can be identified. When the in-
stabilities are weakly driven (Fig. 4.8), a very good match between the
estimated deviation v‖res ± ∆v‖NL and the nonlinear EP redistribution
is observed, where v‖res is the linear resonance velocity. Otherwise, in
the strongly driven regime (Fig. 4.9) the importance of the frequency
chirping comes out. In particular, nonetheless the value v‖res ± ∆v‖NL

remains very predictive, as long as the nonlinearly modified resonance
velocity is chosen as center of the EP redistribution due the EGAM.
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The nonlinear frequency shift which is characteristic of the EGAM,
can not be intrinsically implemented in the BPI model used here (al-
though a chirping can be observed for different BPI models applied in
other regimes, see for example Ref. [102]). The effect of this difference
in the basic physics has effects on the EP redistribution. This clearly
emerges in Fig. 4.10, where the distribution function of the BPI at satu-
ration (dashed-black line), mapped back in the v‖ space, is overplotted on
the evolution of the EP profile for nEP/ni = 0.176 and nEP/ni = 0.3. In
particular, it is evident how the discrepancy due the fixed character (at
∼ ωp) of the Langmuir resonance gives rise to a very different morphol-
ogy of the distribution function, although well predicting the effective
nonlinear velocity spread. Also the inclusion of additional modes with
artificial ad hoc damping rates results in a drastically non-comparable
non-linear dynamics, underlining the intrinsic differences of the physical
systems.
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Chapter 5

Conclusions and outlook

The success of achieving magnetic-confinement nuclear fusion depends
on the ability of controlling the stability and confinement of the energy
and particles in the tokamak fuel: the hot plasma. Stability and confine-
ment strongly depend on the presence or absence of plasma waves which
can become unstable by tapping the plasma free energy, contained for
example in the spatial gradients of the equilibrium temperature, or in
the nonuniformity in phase space. Therefore, achieving a comprehensive
theoretical model of the nonlinear dynamics of a tokamak plasma is im-
portant for understanding the plasma behavior in present-day tokamaks
and predicting it in future reactors.

Among the different waves which are present in a tokamak plasma,
we have focused here on low-frequency standing waves with acoustic po-
larization, named geodesic acoustic modes (GAMs). They can be excited
by the nonlinear interaction with turbulence, or by the presence of an
energetic particle (EP) population, via inverse Landau damping. In the
latter case, these are called EP-driven GAMs, or also EP-induced GAMs
(EGAMs).

In this dissertation, an overview of the recent development of our
knowledge on the linear and nonlinear dynamics of EGAMs has been
given. In particular, the results on the linear dynamics and on the wave-
particle nonlinear dynamics of EGAMs, have been described. The main
results described here have been obtained by A. Biancalani and by the
PhD students I. Novikau and A. Di Siena under his supervision (with T.
Görler acting as main internal advisor of A. Di Siena at the Max-Planck
Institute for Plasma Physics in Garching, and E. Poli as academic advisor
of I. Novikau and A. Di Siena at University of Ulm).

The linear dynamics of EGAMs has been investigated here in two
kinds of magnetic equilibrium: analytical equilibria with circular flux sur-
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faces, and equilibria taken from experimental reconstruction, with more
general shape. Analytical equilibria with circular flux surfaces allow to
focus on the main physics of the inverse Landau damping and compare
with simple models for analytical theories. This comparison has been
done for both GAMs and EGAMs. The effect of the flux surface elon-
gation has been shown to modify the resonance position in phase space,
consequently decreasing the growth rate, and also slightly modifying the
frequency. A comparison with an ASDEX Upgrade selected case, the
so-called NLED-AUG base case, has shown how a good agreement of the
linear frequency obtained with numerical simulations and the onset of
the nonlinear frequency chirping cycle can be found, despite the approx-
imations in the EP distribution function and the adiabatic model for the
electrons. When including kinetic electron effects, the growth rate of the
NLED-AUG case has been found to decrease, due to a higher damping,
given by the electron Landau damping, and to a modified frequency and
mode structure, which indirectly affects the ion Landau damping. A
mode particle resonance diagnostics has shown how the dominant elec-
trons responsible for this, are the barely trapped electrons.

The nonlinear dynamics of EGAMs has also been studied, focusing
on the wave-particle nonlinearity, i.e. the nonlinearity responsible for the
redistribution of the EP population in phase space. For this investiga-
tion, the comparison with the beam-plasma instability (BPI) has been
of crucial importance. In fact, due to the 1-1 analogy which has been
created here, a reduced model has been constructed, capable to predict
saturation levels and the amount of redistributed EP in phase space, due
to the EGAM. Regarding the EP redistribution, two regimes have been
identified: the regime where the EGAMs are weakly driven shows a very
good match between the nonlinear EP redistribution observed in the two
problems; on the other hand, above a certain threshold in the drive, a
difference is found. The difference has been shown to occur due to the
nonlinear modification of the mode frequency (i.e. the frequency chirp-
ing) which exists for the EGAMs, but is not observed for the BPI with
the adopted model, for the cases of interest. It is important to note that
the scaling of the saturated electric field with the linear growth rate was
found to be quadratic in Ref. [67], and it does not change at the threshold
of the two regimes identified here. Therefore, we have stated that the
onset of a non-negligible frequency chirping affects the EP redistribution
in velocity space but not the scaling of the saturated levels. The EP re-
distribution of the EGAM has been shown to be recovered with the BPI
in the high-drive regime, by adding an ad-hoc frequency modification to
the BPI model. As main results, the formulas for the predictions of the
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nonlinear saturation level and width of the velocity redistribution around
the resonance velocity have been provided.

The study of the nonlinear saturation of EGAMs due to wave-wave
interaction is in progress, and constitutes one of the topics of the next
publications. Wave-wave coupling of an EGAM with itself, and of an
EGAM with turbulence, is under consideration. Moreover, experimental
observations like the NLED-AUG case show how EGAMs coexist with
Alfvénic activity, and therefore more complex nonlinear couplings can
occur. These would be responsible for different redistribution of the EP
population, and therefore are necessary to study for achieving a com-
prehensive understanding of the global nonlinear behavior of EGAMs
in tokamak plasmas, and eventually constructing a selfconsistent model
for the stability and transport of turbulent burning plasmas in fusion
devices.
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